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Abstract—Since the first whole-genome sequencing, the
biomedical research community has made significant steps to-
wards a more precise, predictive and personalized medicine.
Genomic data is nowadays widely considered privacy-sensitive
and consequently protected by strict regulations and released
only after careful consideration. Various additional types of
biomedical data, however, are not shielded by any dedicated legal
means and consequently disseminated much less thoughtfully.
This in particular holds true for DNA methylation data as one
of the most important and well-understood epigenetic element
influencing human health.

In this paper, we show that, in contrast to the aforementioned
belief, releasing one’s DNA methylation data causes privacy issues
akin to releasing one’s actual genome. We show that already
a small subset of methylation regions influenced by genomic
variants are sufficient to infer parts of someone’s genome, and to
further map this DNA methylation profile to the corresponding
genome. Notably, we show that such re-identification is possible
with 97.5% accuracy, relying on a dataset of more than 2500
genomes, and that we can reject all wrongly matched genomes
using an appropriate statistical test. We provide means for
countering this threat by proposing a novel cryptographic scheme
for privately classifying tumors that enables a privacy-respecting
medical diagnosis in a common clinical setting. The scheme
relies on a combination of random forests and homomorphic
encryption, and it is proven secure in the honest-but-curious
model. We evaluate this scheme on real DNA methylation data,
and show that we can keep the computational overhead to
acceptable values for our application scenario.

I. INTRODUCTION

Since the first whole-genome sequencing in 2001, the cost
of molecular profiling has been plummeting, enabling a signif-
icant progress in biomedical science and the rise of precision
medicine [1]. This scientific breakthrough is triggered by
the increasing availability of biomedical data, whose main
negative counterpart is the new threat towards health privacy.
The extent of the threat, and mechanisms to mitigate it, have
been extensively studied regarding the genomic data. The
various attack vectors and protection techniques have been
well surveyed and categorized back in 2014 already [2]. The
genome is especially privacy sensitive as it uniquely identifies
someone, it is very stable over our whole lifetime, and it
is correlated among relatives [3]. This may explain why the
security community has been, so far, focusing essentially on
enhancing the privacy of genomic data, and not the other
types of biomedical data, such as epigenetic data, despite their

vital functions for human health and their rapidly growing
availability [4].

DNA methylation is one of the most important and best
understood epigenetic elements influencing human health. It is
an essential regulator of gene transcription. As a consequence,
aberrant DNA methylation patterns (such as hypermethylation
and hypomethylation) have been associated with a large num-
ber of cancer types [5], [6], [7]. Because of its crucial role in
human health, DNA methylation data might constitute highly
sensitive data as well, whose privacy should be protected using
dedicated legal or technical means. However, epigenetic data
might not even be considered as genetic information in the
strict legal sense, and thus not be protected by legal frame-
works, such as the US Genetic Information Nondiscrimination
Act (GINA) [8], [9].

Contrary to the genome, DNA methylation data, and more
generally epigenetic data, vary quite significantly over time,
mainly because they are highly influenced by environmental
factors. This may explain why DNA methylation data are
simply released (without identifiers) on open online platforms
with nonrestricted access. In order to prevent privacy breaches,
the genomic data corresponding to the DNA methylation data
are generally not made publicly available, and follow stricter
privacy rules. However, it is well-known that DNA methylation
is also influenced by genetic factors [10]. As a consequence,
correlations between DNA methylation and the genome could
be exploited in order to re-identify anonymous DNA methy-
lation profiles by using some public genomic database (e.g.,
OpenSNP [11]). Unfortunately, previous work has only tackled
potential re-identification risks and countermeasures from a
relatively high-level qualitative perspective (see Section IX). In
this work, we provide the first detailed quantitative assessment
of the identification risks inherent to DNA methylation data
and, moreover, propose a provably secure technical mechanism
to enable privacy-preserving methylation-based diagnosis.

a) Contributions: Specifically, we present a Bayesian
inference framework to predict part of the genotype from DNA
methylation data. We then propose an algorithm that matches
DNA methylation profiles to the genotypes whose posterior
probabilities are maximized given these methylation profiles.
By using a rich methylation-genotype dataset, we show that
only a few tens of methylation regions are sufficient to



accurately match DNA methylation to genotypes. Furthermore,
we present a statistical method that enables us to reject the
small fraction of cases where the matching algorithm does not
provide 100% accuracy, e.g., when the genotype corresponding
to the methylation profile is not part of the genotype dataset.
We also observe that, in such cases, if a relative is part of
the genotypes’ dataset, it is the one (wrongly) matched to
the methylation profile. By including all genotypes contained
in phase 3 of the 1000 Genome Project, we show that the
attack success is very robust to an increase in the size of the
genotype dataset. All accuracy, false-positive and true-positive
rates remain constant for a size of the genotype dataset varying
from 75 to 2579.

Given the extent of the threat, we propose a novel crypto-
graphic scheme for privately classifying tumors, which enables
a privacy-preserving medical diagnosis in a common clinical
setting. With our method, neither a curious third-party running
the machine-learning algorithm can learn the personal DNA
methylation data, nor the data owner (e.g., the patient) can
learn the detailed machine-learning model. In particular, we
adapt existing homomorphic schemes for privately evaluating
random forests with encrypted data, and prove the resulting
scheme secure in the honest-but-curious adversarial model,
which constitutes the state-of-the-art adversary model in this
problem setting. We evaluate the classifier performance on
real methylation data, and show that it can precisely classify
brain tumors in 9 subtype classes based on 900 methylation
levels in less than an hour, which represents a fully tolerable
computational time for the considered application scenario.

b) Organization: In Section II, we introduce the relevant
concepts and properties of DNA methylation. In Section III,
we present the considered adversarial model. We then detail
the analytical method behind our identification attack in Sec-
tion IV. We describe our dataset in Section V before using it to
evaluate the success of our attack in Section VI. In Section VII,
we present our private classification algorithm and evaluate
its performance in Section VIII. We review the most relevant
previous work in Section IX, before concluding in Section X.
We provide the detailed security proofs of our cryptographic
scheme in the Appendix.

II. BACKGROUND

Methylation of the DNA is one of the most important
epigenetic modifications in the genome, with profound conse-
quences on the structure and the activity of the DNA molecule
[12], [13]. It has been observed in numerous species (animals
and plants), but some species lack this mechanism. It consists
in the addition of a methyl group to the cytosines or adenine
by specific enzymes called methyltransferases; however in
humans, only cytosine methylation in CpG-dinucleotides, lead-
ing to the formation of 5-methylcytosine, has been observed.
Given its mostly repressive effect on gene expression, DNA
methylation at the promoter of genes is a mechanism by which
genes can be silenced during development, for example to
maintain the pluripotent state of stem cells [14].

Aberrant changes in the DNA methylation patterns, which
are frequently observed in cancer, can lead to the hyper-
activation of genes such as oncogenes, or the silencing of
tumor suppressor genes [5]. While the changes in the DNA
methylation pattern can be dramatic in cancer, DNA methyla-
tion in normal tissues can also be modified due to, for example,
environmental influences. It has been shown in diverse studies
that environmental cues such as pollution, exposure to stress
or cigarette smoke leads to changes in the DNA methylation of
the genome for persons exposed to these influences [15], [16],
[17], [18]. Recently, several studies analyzed the influence
of these external effects on the methylation patterns in a
cohort of mothers and children and found massive number of
differentially methylated regions when comparing children of
smoking and non-smoking mothers, with downstream effects
on the expression of genes involved in important pathways of
lung development and maturation [15], [16].

Besides external factors, the genotype of an individual can
also affect the methylation of certain regions [19], [10], [20].
Individuals carrying particular alleles at some single nucleotide
polymorphisms (SNPs) can exhibit specific DNA methylation
patterns at some loci. Such SNPs having an influence on
the methylation are called methylation quantitative trait loci
(meQTLs), and have been studied previously to uncover the
mechanisms by which single nucleotide polymorphisms can
have a effect on the methylation patterns. An obvious effect
is when the polymorphism affects a CpG dinucleotide. If the
polymorphism affects the cytosine (C) or the guanine (G),
the CpG dinucleotide is lost, leading to a loss of methylation
at this site. However, other polymorphisms beyond these
“CpG destroying SNPs” can lead to methylation changes.
Given this possible link between varying genotypes and DNA
methylation, the question is to what extent knowledge of the
DNA methylation pattern could be used to reverse-engineer
the meQTLs and predict genotypes based on the methylation.

III. THREAT MODEL

We assume that the adversary gets access to one or multiple
individual profiles of genome-wide DNA methylation levels, as
well as to a set of genotypes. There are around 28 million CpG
sites per individual and about 150 million known genomic
variants to which the adversary can potentially have access.
Then, we study various scenarios that could occur in practice.
A typical example is to map a given anonymized DNA methy-
lation profile to a genotype in order to re-identify it. Indeed,
genomic data can facilitate de-anonymization, because there
are already many profiles publicly available online with real
identifiers, but also because it includes information about phe-
notypic traits, and kinship that can be further matched to side
channels such as surname-genome associations databases [21]
or online social networks [22]. Moreover, the genome is very
stable over our whole lifetime, and thus cannot be revoked.

Note that we assume the adversary to have no prior knowl-
edge about the presence of the target’s genotype in the set
of genotypes. Thus, the adversary also wants to determine
whether the genomic profile that most likely matches to DNA
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methylation profile belongs to the same person. In other words,
the adversary also tests if the owner of the DNA methylation
profile is also part of the genomic dataset. We also study
if familial relationships can mislead the adversary about the
genotype corresponding to the methylation profile.

In the private classification model, we consider an honest-
but-curious adversary as this assumption is standard in previ-
ous works on privacy-preserving medical diagnosis in a clin-
ical setting [23], [24], [25], [26]. Indeed, it seems reasonable
to assume that involved parties in the healthcare setting, such
as hospitals or medical practitioners, will follow the protocol
honestly. We leave the strengthening of our protocols to work
with active adversaries for future investigations.

IV. ATTACK METHODOLOGY

We present here our de-anonymization attack from a theo-
retical perspective. The attack relies upon the matching of one
or multiple DNA methylation profiles to their corresponding
genotypes. To do so, the adversary first infers the probability
of a genotype given only methylation data, and second maps
the methylation profile to the genotype that maximizes the
average posterior probabilities between genotypic positions
and methylation sites. Once the best matching has been found
by the adversary, he also wants to be sure that the methylation
and genotypic samples in the matching pair belongs to the
same person. Indeed, it could be that an individual is part of the
DNA methylation dataset but not of the genotype dataset, or
vice versa. To verify this, the adversary relies on a test statistic
related to the matching score that provides him with a degree
of certainty about whether the matching between methylation
data and genotype is significant enough to be considered
correct. If there is not enough certainty, the adversary can
conclude that the corresponding genotype is most likely not
part of the dataset.

A. Learning the Attack Model

The probabilistic relationships between methylation levels
and genotypes are derived by relying on a separate training
dataset T = {(~mi,~gi)}ti=1 containing t pairs of DNA methy-
lation levels’ profiles and their corresponding genotypes. In
practice, methylation profiles ~mi and genotypes ~gi have tens of
millions of different positions. Specifically, the training phase
aims: (i) to determine the meQTLs, i.e., the positions q in
the genotype influencing the methylation levels in a region r,
and (ii) to learn the magnitude of this influence. During this
training phase, we select a subset G of n independent meQTLs
gqi , and determine, for each of them, the single most correlated
methylation region mr

i over all the t pairs. In case more
than one methylation region is most correlated with the same
meQTL, we pair the highest correlated methylation region with
the given meQTL first, and then pair the other methylation
region with the second most correlated meQTL, and so on
and so forth. This eventually provides us with a set of
methylation region-meQTL position pairs Q = {(rj , qj)}nj=1,
where 8(rj , qj), (rk, qk) 2 Q : rj 6= rk , qj 6= qk.

Once we have identified the positions in the genotype that
influence most DNA methylation, we are interested in inferring
the posterior probability of every meQTL gij given the corre-
sponding methylation region mi

j , Pr(Gi
j = gij | M i

j = mi
j). In

this probability, Gi
j denotes the discrete random variable of the

meQTL at position qi of individual j, where gij 2 {0, 1, 2} for
any qi and j, and M i

j denotes the continuous random variable
representing the methylation levels of individual j averaged
over all CpG sites within region ri, where mi

j 2 [0, 1]. By
Bayes theorem, we have that:

Pr(Gi
j = gij | M i

j) =
p(M i

j | Gi
j = gij) Pr(G

i
j = gij)P

gi
j
p(M i

j | Gi
j = gij) Pr(G

i
j = gij)

(1)
The prior genotype probabilities Pr(Gi

j = gij) can be
retrieved from population statistics databases, such as dbSNP,1
or directly computed on any dataset of populations with
similar ethnicity background. Moreover, we can learn the
conditional probability distributions p(M i

j | Gi
j = gij), for all

gij 2 {0, 1, 2}, by relying on our training dataset T , focusing
only on the meQTL-methylation pairs contained in Q. In this
process, we must select the continuous distribution function
that best fits the methylation-meQTL data. We discuss what
distribution function fits best in Section VI.

B. Matching Attack

After having trained p(M i
j | Gi

j = gij) for all pairs in Q
and, for each pair, all three possible genotype values, on the
training dataset T , we can predict the posterior probabilities
Pr(Gi

j = gij | M i
j) of the n meQTLs in G given methylation

profiles in another dataset, referred to as the test set in the
following. The test set consists of two independently chosen
subsets: (i) a set S = {(~si)}

ng

i=1 containing ng � 1 genotypes,
and (ii) a set E = {(~ei)}nm

i=1 containing nm � 1 methylation
profiles. Note that individuals in S and E may be different,
and that the adversary wants to infer the links between S
and E . In this endeavor, the adversary must compute, for all
meQTLs in G and ng⇥nm pairs of individuals’ in the test set,
the posterior probabilities of the actual value of the genotypes
given the methylation sites (by using the previously learned
probabilities), i.e., pij,k := Pr(Gi

j = sij | M i
k = eik).

We derive a match score wj,k between individu-
als j and k by averaging the conditional probabilities
pij,k over all n meQTL-methylation pairs in Q, i.e.,
wj,k =

1
n

Pn
i=1 p

i
j,k. We then select the matching ↵⇤ over

(max(ng, nm))! /(max(ng, nm)�min(ng, nm))! possible as-
signments that maximizes the sum of the individual match
scores, i.e.,

↵⇤
= argmax

↵

nmX

k=1

ngX

j=1

wj,k (2)

= argmax

(j,k)

1

n

nmX

k=1

ngX

j=1

nX

i=1

Pr(Gi
j = sij | M i

k = eik). (3)

1https://www.ncbi.nlm.nih.gov/SNP/
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This problem boils down to finding a best vertex matching
on a weighted bipartite graph, with ng vertices on one side
representing the genotypes of ng individuals, and nm on
the other side representing the methylation profiles of nm

individuals. Each edge between any two vertices pair (j, k)
has a weight equal to wj,k. As the number of possible
assignments increases with O(max(ng, nm)

min(ng,nm)
), the

naive matching approach is computationally intractable if
both ng and nm are big. Fortunately, there exist several
algorithms in the literature that find the maximum weight
assignment in polynomial time. In our experiments, we use
the blossom algorithm [27], because it only has a complexity
of O((ng+nm)

3
) and it can also be applied to general graphs.

Of course, if nm = 1 or ng = 1, there is no need to use
any maximum weight assignment algorithm as one can simply
select the genotype ~sj , respectively methylation profile ~ek,
maximizing wj,1, respectively w1,k, and the complexity is then
linear in ng , respectively nm.

C. Statistical Validation of the Best Matching

In order to evaluate the significance of the match score
between genotype ~sj and methylation profile ~ek, we rely on
the z-test and the corresponding z-score, defined as zj,k =

(wj,k � µ(~wk)) /�(~wk), where ~wk is the vector of match
scores between methylation profile of individual k, ~ek, and all
genotypes in S , µ(~wk) is its mean, and �(~wk) is its standard
deviation. The z-score can be similarly derived between the
genotype ~sj of individual j and all methylation profiles in
E . The only requirement is that the cardinality of the set over
which we compute the mean and variance is large enough. The
z-score allows us to determine, once a methylation profile is
mapped to a genotype, whether these two profiles correspond
to the same individual. Indeed, the pair that maximizes the
match score might not be the one between the profiles of the
same individual, especially when the individual’s data is not
part of one of the sets E or S . In this case, we should be
able to detect that the mapped pair does not contain the same
individual. This is done by validating the mapped pair for a
z-score greater than a given threshold.

If nm-by-ng matching becomes computationally infeasible,
it is worth noting that it is also possible to map methylation
profiles one-by-one to genotypes, i.e., carry out nm times a
one-by-ng matching whose complexity is then linear in nmng .
Moreover, it can occur that the adversary has access to multiple
methylation profiles of the same person but at different points
in time. In this case, it can also be beneficial to rely on
the one-by-ng matching, which allows multiple methylation
profiles to be mapped to the same genotype, contrary to the
bipartite graph matching. In case the adversary is certain
that there is only one methylation profile per individual,
the nm-by-ng matching outperforms the one-by-ng matching
(see Section VI), but if he is not sure about the number of
methylation profiles per individual, the nm-by-ng matching
becomes more challenging to use.

V. DATASET

The dataset that was used in this study consists of meQTLs
determined from a set of 75 individuals, 42 of which have
parental relations (21 mother/child pairs) for which whole
blood was available. The DNA methylation was determined
using whole genome bisulfite sequencing (WGBS), allowing
a genome wide measurement of the DNA methylation levels
for all 28 million CpG dinucleotides. The sequencing data was
processed using an in-house processing pipeline consisting of
alignment of the sequencing reads, quality assessment, and
methylation calling. Then, the genotype was determined at
known SNP loci listed in the dbSNP database version 141,
using the Bis-SNP tool, which calls SNP genotypes from
WGBS data [28]. For the majority of individuals (67 out of
75), samples collected at the birth of the child, referred to as
t0, were available, but also at later times: one year (t1), up to
8 years (t8) for some individuals after birth.

Such a longitudinal dataset containing individuals with
parental relations represents a very unique and valuable data
source in the biomedical community. Note that this dataset
cannot be released publicly yet, but will be certainly made
available to researchers in a near future.

On a subset of these samples, we selected the CpGs based
on their high variance across the dataset. CpG showing a very
stable methylation profile across the subset of samples were
discarded, as they are not expected to be under the influence
of meQTLs. meQTLs were determined using a Spearman
rank correlation test [29] (false discovery rate threshold after
Benjamini-Hochberg correction [30] of 1%) for all SNPs
located within 50 kb (kilobases) up-/downstream of the CpG
showing highly variable methylation. This filtering process
eventually output 568,103 meQTL-methylation pairs contain-
ing 502 methylation regions and 544,762 different SNPs. This
implies an average number of approximately 1132 meQTLs
per methylation region.

VI. ATTACK EVALUATION

We present here our main experimental results, using the
dataset described in the previous section. As explained in
Section IV, the training phase relies on two different phases:
(i) identify the meQTLs, i.e., the positions in the genotype
that influence the methylation levels, and (ii) quantify the
magnitude of this influence. As we carry out the first step
similarly for all experiments, we present it first. This can also
be seen as a data preprocessing step, which filters out non-
relevant genotypic positions and methylation regions.

A. Generic Training Phase
We focus here on the meQTL-methylation pairs with a

Spearman rank correlation coefficient larger than 0.49 (FDR
threshold after Benjamini-Hochberg correction of 1%). This
provides us with 326 methylation regions and 9,532 pairs,
i.e., around 29 meQTLs per methylation region. Then, we
keep only one most correlated meQTL for each methylation
region, resulting in 326 pairs, as expected. Filtering out the
meQTLs for which no information was available on dbSNP,
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we are left with 314 meQTL-methylation pairs. Finally, since
we have to compute the variance (see below) of the conditional
probability p(M i

j | Gi
j = gij) for all possible values of gij , we

filter out meQTLs that do not have at least two samples per
genotype value gij . This eventually led us to a total of 293
meQTL-methylation pairs for the whole dataset.

Normal Distribution Function: The first step towards
precisely modeling the influence of meQTLs on methylation
regions is the selection of the continuous distribution function
that best fits the observed data. We rely on the normal
distribution which happens to be well fitted from both a visual
and statistical perspective. First, in order to evaluate if the
normal distribution approximation was statistically significant,
we applied the one-sample Kolmogorov-Smirnov test to all
293 meQTL-methylation region pairs and possible genotype
values, gij 2 {0, 1, 2}. The null hypothesis (the samples
belonging to the normal distribution) was only rejected in a
minority of cases at significant level 0.05 (134 out of 879).
When we inspected those few cases manually, we found that
all of those cases contained either a very few outliers or almost
all of the methylation levels belonged to the exact same bin
in the histogram and thus were almost exactly the same.

We also visually inspected the empirical conditional distri-
butions p̂(M i

j | Gi
j = gij) for gij 2 {0, 1, 2} and reached the

same conclusion. Fig. 1 exemplarily shows Q-Q plots as well
as the empirical distribution of methylation levels given each
possible genotype of a representative pair (M i

j , G
i
j) in our

dataset. Moreover, it also displays the corresponding normal
distributions induced by the unbiased estimators of the mean
and standard deviation. The Q-Q plots depict on the x-axis
the theoretical quantiles of a standard normal distribution.
The y-axis displays the normalized quantiles of the sample
distribution for each Gi

j = gij . Given the minor discrepancies
between the points and the diagonal, we can expect that the
normal distribution will be a sufficiently good fit for the attack.
Second, the part of the figure at the bottom right confirms that
the normal distribution indeed is a good approximation for the
conditional probability. More importantly, it also shows that
the overlap between the distributions conditioned on different
genotype values is small, which can be used to recover the
correct genotype given the methylation level. This gives the
intuition behind our re-identification attack.

B. Experiment-specific Training and Testing Sets
In this second phase, we quantify the magnitude of the

influence of each meQTL on its corresponding methylation
region. From now on, in order to illustrate the performance
of the attack under different scenarios, we build our training
dataset from different subsets of the whole dataset described
in Section V. We consider three different training/testing
experimental setups. In the first scenario, referred to as (a), we
select one methylation profile per individual, i.e., 75 profiles,
as follows: we pick the 67 profiles available at time t0 and,
in addition, the profiles of individuals not yet selected at t0
(because of absence of data) at the smallest time point as
possible: 1 at t1, 1 at t3, 3 at t4, 2 at t5, and 1 at t6. We further

Fig. 1. Example of the empirical distribution p̂(M i
j | Gi

j) of methylation
levels conditioned on genotype values gij = {0, 1, 2} for the pair with meQTL
rs10928633 (in chromosome 2, position 138625907) and methylation region
[138625907, 138626564] in the same chromosome. Red color (top-left plot)
is p̂(M i

j | Gi
j = 0), blue color (top-right plot) is p̂(M i

j | Gi
j = 1), and

green color (bottom-left plot) is p̂(M i
j | Gi

j = 2).

select the 75 genotypes corresponding to these methylation
profiles. Then, we randomly select 37 pairs for the training
set, and 38 for the testing set, or attack set. We repeat the
random splitting 100 times.

In the second setup, (b), we want to make sure that there
are no individuals in the training and testing sets who have
familial relationships, i.e., we want to avoid a child being in
the training set, and his mother being in the test set, or the
other way around. We also aim at 37 samples in the training
set and 38 in the test set. Thus, we first randomly select from
2 to 18 mother-child pairs to be included in the training set,
which leads us to 4 to 36 samples. Then, we randomly select
the remaining samples among the isolated individuals (i.e.,
those who have no child or mother in our dataset) to attain
37 samples. We repeat this random selection 100 times, and
select the 38 remaining profiles to be part of the test set. This
process ensures that there is no individual in the test set who
is member of the same family as somebody in the training set.

The third experimental setup, (c), is used for the scenarios
where we want to map more than one methylation profile
at a time with the genotypes. In both previous settings, we
consider nm = 1 and ng = 75 (or more, as we will see
later), but we repeat the attack over all 38 methylation profiles
independently. Now, we want to match nm > 1 methylation
profiles to ng = 75 genotypes. We then select our samples in
order to maximize the number of methylation profiles in the
test set, as follows. We select all individuals at time t1 and at
time points t > t1 that do not have methylation profiles at t0
and t1. This gives us 16 methylation profiles at t1 plus 7 at
later time points, thus 23 methylation profiles for the training
set. Then, for the test set, we select all methylation profiles at
t0 whose owners do not overlap with those in the training set.
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Fig. 2. Identification of one methylation profiles among 75 genotypes:
Average accuracy of the matched pairs, and true-positive, false-positive rates
for a varying z-score threshold.

This leads to 52 methylation profiles for the test set.
Note that the requirement of having two samples per geno-

type value to learn the variance of the normal distribution is
reducing the number of meQTL-methylation pairs when we
apply it to the training set and not the whole dataset. The
total number of pairs ranges from 237 to 248 with a median
value 240 in setup (a). It ranges from 208 to 236 with a median
of 222.5 for (b), and it is of 187 pairs for setup (c) for which
there is only one run and the number of samples in the training
set is smaller (due to stronger constraints).

C. Results

We start by showing the performance of the attack with all
available meQTL-methylation pairs (given the aforementioned
constraints), nm = 1 and ng = 75. We include all 75 indi-
vidual genotypes to be potentially matched to the methylation
profiles as we assume that this can only make the attack harder
for the adversary than considering only the 38 or 52 genotypes
corresponding to the methylation profiles of the test set. Of
course, we only select the 38 methylation profiles present in
the test set to run our experiments. Therefore, we try to match
one methylation profile with 75 genotypes, 38 times, over 100
runs, i.e., 3,800 times, and average the results.

Fig. 2 shows: (i) the matching accuracy, i.e., the fraction
of pairs containing genotypes and methylation profiles of the
same individual, (ii) the true-positive rate (TPR) after applying
the z-score test, i.e., the number of true matchings divided by
the sum of the number of true matching pairs and the number
of matching pairs that are wrongly identified as non-matching,
and (iii) the false-positive rate (FPR) after applying the z-score
test, i.e., the number of false mappings that are identified as
true divided by the sum of the latter value and the number of
true mappings identified as false. We could have also depicted
other metrics, such as accuracy after z-score, but we consider

Fig. 3. Identification of 52 methylation profiles among 75 genotypes: Average
accuracy of the matched pairs, and true-positive rate for a varying z-score
threshold.

the TPR and FPR as sufficient metrics to depict the success
of the identification attack.

First, Fig. 2 shows that, on average, the attack accurately
matches the methylation profile to its corresponding genotypes
around 97.5% of the time. Then, we notice that, there exists a
z-score for which, given a certain matching, we always reject
all wrongly matched pairs (FPR = 0 for z-score approximately
greater than 5), and never reject those that are correct (TPR =
1 for z-score approximately smaller than 5.5). This means that
for the 2.5% of the pairs that are wrongly matched, we are
able to identify that they are false positives. Finally, we notice
that the matching accuracy is the same for both scenarios (a)
and (b), and that the FPR and TPR are also very similar.

Fig. 3 shows the attack when there are more than one
methylation profiles to match to their genotypes. Specifically,
given the experimental setup (c), we have 52 methylation
profiles that we try to match again to the whole 75 genotypes.
First of all, we notice that the matching accuracy is 100%,
i.e., that the attack correctly matches the 52 methylation-
meQTL pairs. Then, by looking at the z-score to validate the
matched pairs, we note that it starts rejecting valid pairs from
around 5.2. As we only have correctly matched pairs after the
matching algorithm, there is no point in displaying the FPR
because there is no wrong pair to reject. We conclude from
Fig. 2 and 3 that the attack is more successful when matching
more than one methylation profile to multiple genotypes.

Next, we evaluate the impact of reducing the number
of methylation-meQTL pairs on the attack success. In this
endeavor, we gradually use an increasing number of observed
methylation-meQTL pairs, from 1 to 237, in decreasing order
of correlation. Fig. 4 shows the evolution of the matching
accuracy and of the TPR after applying the z-test, for three
possible FPR vaues: 0, 0.05, and 0.1. First, we notice that
we reach the maximum matching accuracy with only 20
methylation-meQTL pairs, and almost 90% accuracy with 10
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Fig. 4. Identification of one methylation profile among 75 genotypes with an
increasing number of observed meQTLs/methylation regions (in descending
levels of correlation): Average accuracy of the matched pairs, and true-positive
rates at various false-positive levels.

pairs. Second, we see that we attain a TPR of 0.6 at a FPR of
0.05 when we apply the z-test (at 10 pairs). Furthermore, we
reach a 0.95 TPR at 0.05 FPR with 20 methylation-meQTL
pairs, and 0.99 with 30 pairs.

When evaluating the same experiment with a fixed threshold
of 5.5 (as found suitable in Fig. 2), we notice that 80
methylation-meQTL pairs are necessary to achieve a TPR of
almost 0.9 and a FPR of 0. This arises from the fact that
a larger number of methylation-meQTL pairs provides more
information and thus gives a more accurate match score, which
also allows for higher z-score thresholds to perform better.

Similarly, Fig. 5 shows the evolution of the various metrics
with respect to an increasing number of observed methylation-
meQTL pairs, for nm = 52. The less smooth behavior of the
curves is due to the fact that we have one run here compared
to 100 runs in the case where nm = 1. We notice here
that the matching accuracy and TPRs reach highest values
for a number of methylation-meQTL pairs that is lower than
when nm = 1. Precisely, the attack reaches full accuracy
and TPR at 0 false-positives with only 13 pairs. Again, we
see that matching more than one methylation profiles to their
corresponding genotypes induces higher attack success.

We evaluate now how the attack performance evolves when
the genotype corresponding to the targeted methylation profile
is not present in the genotype dataset. We have ng = 74

genotypes if the targeted genotype is not present and, for the
sake of comparison, we keep the same number when it is
present, by removing another of the 74 genotypes at random.
Fig. 6 shows the evolution of this performance with respect to
an increasing probability that the targeted genotype is in the
dataset, from 0 to 1, by intervals of 0.01. For each probability
value x, we randomly generate a value v between 0 and 1,
uniformly, and keep the targeted genotype in the dataset if
and only if v < x. We repeat this sampling process 100 times

Fig. 5. Identification of 52 methylation profiles among 75 genotypes with an
increasing number of observed meQTLs/methylation regions (in descending
levels of correlation): Average accuracy of the matched pairs, and true-positive
rates at various false-positive levels.

Fig. 6. Identification of one methylation profiles among 75 genotypes with
an increasing probability of the correct matching genotype being present in
the dataset: Average accuracy of the matched pairs, true-positive and false-
positive rates.

and average its outcomes. As expected, the matching accuracy
increases with the probability that the correct genotype is
present in the dataset. The adversary cannot find the correct
genotype if it is not there. The crucial point here is that
the adversary can detect that the genotype is not present
for any presence probability. Indeed, with the appropriate z-
score (between 4.9 and 5.4), the adversary always rejects
the wrongly matched genotypes (FPR=0) while accepting the
correctly matched genotypes (TPR=1).

We also investigate the effect of a relative’s genotype being
in the genotype dataset, with a varying presence probability
of the targeted genotype, as in Fig. 6. The relative here is
either the mother or the child of this mother. Fig. 7 shows
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Fig. 7. Wrongly matched first-degree relatives in the identification of one
methylation profiles among 74 genotypes with an increasing number of
observed meQTLs/methylation regions (in descending levels of correlation):
Average accuracy of the matched pairs, and true-positive rates at various false-
positive levels.

the percentage of times the relative’s genotype is matched to
the methylation profile, in absolute value, and relative to the
condition that the matched pair was wrong, and the percentage
of times this wrongly matched pairs were rejected by the z-test.
First, we observe a linear decrease of the probability of being
matched to the relative with respect to the presence probability.
We also see that this curve does not start at 1 but at around
0.7. This means that, when the targeted genotype is not in the
dataset, the wrongly matched genotype is in 70% of the cases
the relative’s genotype, and in the 30% remaining cases the
one of an unrelated individual.

In order to better understand these proportions, we display
the fraction of familial matches among all wrong matches
(green dashed curve). We observe that this fraction increases
with the presence probability. In order to understand this
behavior, we must recall that the matching accuracy also
increases with the presence probability. This means, that the
fewer wrong matched pairs there are, the more likely these
are pairs containing the genotype of a relative and not of an
unrelated individual. Also, it means that, when the chance that
the targeted genotype is present in the dataset is high, the
only genotype that can mislead the adversary’s matching is
the relative’s genotype in the vast majority of cases.

Finally, we study the robustness of our attack for an increas-
ing number of genotypes, from 75 to 2579, by including the
2504 genotypes of the 1000 Genomes Project (phase 3) [31].
Fig. 8 shows the evolution of the matching accuracy, of the
false-positive and true-positive rates after the z-test, of the
minimum z-score for reaching a null FPR. First, we notice
that the matching accuracy remains constant, at 97.5%, for
all genotype dataset’s size ng . Moreover, there always exists
a z-score that enables us to reject all wrongly matched pairs
while keeping all correctly matched pairs. We notably notice

Fig. 8. Identification of one methylation profiles among an increasing number
of genotypes, from 75 to 2579: Average accuracy of the matched pairs, true-
positive and false-positive rates and minimum z-score threshold for a null
false-positive rate.

that this z-score evolves quite a lot until around ng = 1000 and
that it tends to converge to a fixed value when ng gets closer
to 2579. We conclude from this figure that the identification
attack is very robust to an increase in the number of genotypes
we have to match the methylation profile to.

We also evaluated this experiment with fixed thresholds
on the z-score. When less than 100 genotypes are present,
a threshold of 5.5 provides a TPR of 1 and FPRs below
0.05. When more than 100 genotypes are part of the test
set, a threshold of 6 achieves the same effect. Since these
observations conform with previous experiments, we believe
that an adversary is able to determine a suitable threshold from
her training data.

VII. PRIVATE CLASSIFICATION WITH RANDOM FORESTS

As we have shown, publicly releasing methylation profiles
has a huge detrimental effect on the patients’ privacy, with a
risk close to 100% to have one’s methylation data re-identified.
Therefore, we first strongly recommend to reconsider if the ex-
isting DNA methylation datasets should remain publicly avail-
able in online databases. Moreover, it is vital to understand the
needs of the medical community for designing appropriate
protection mechanisms that provide privacy guarantees and
diagnosis utility to the patients. In this section, we propose
a novel cryptographic scheme for privately classifying tumors
based on random forests. We first describe the preliminaries
on random forests, and then present our private random forest-
based classifier.

Random forests are a promising technique used in the med-
ical community for classifying diseases [32]. This ensemble
method bases its classification on a multitude of classification
trees in order to prevent overfitting and to reduce the prediction
variance [33]. Danielsson et al. for example developed a
random forest classifier tool enabling the identification of
pediatric brain tumor subtypes with an accuracy of 98% [34].
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In practice, when diagnosing a patient’s disease, a sample
is taken from the patient by a medical practitioner. Then, the
sample needs to be analyzed either by the hospital or by a
medical laboratory, resulting, e.g., in the DNA methylation
profile of the patient. The actual classification based on
these data can then be outsourced to a third-party company
providing data-driven medicine, such as Sophia Genetics [35].
The DNA methylation profile is sent to the third party, which
then provides the diagnosis to the physician or hospital. While
the business model of this third party is inherently protected
by keeping the classification model secret, the patient’s privacy
is clearly at risk, as his data are available to the third party.

Hence, when classifying a patient’s disease, two privacy
goals must be achieved: (1) protecting the company’s clas-
sification model, and (2) protecting the patient’s data from
the third-party company. Note that, in order to construct its
classifier, the company must have access to a training set of
DNA methylation data in clear. Our scheme protects the data
on which only classification has to be carried out (e.g., for
diagnostic purposes). Finally, our scheme is flexible in the
sense that it can release two outcomes: (i) only the class with
the plurality vote (most frequently chosen by the random forest
algorithm), or (ii) the class of every tree in the random forest,
which enables the medical practitioner to carry a more fine-
grained analysis of the distribution over the possible classes.

A. Preliminaries
1) Classification Trees: Classification trees (or decision

trees) are a popular, predictive tool in machine learning,
used to classify an input ~v into a set of different classes
Y = {y0, . . . , yk}. As the name suggests, a classification tree
can be represented by a simple, usually binary tree, in which
each interior node corresponds to an input value vi. The two
edges of each interior node partition the node’s input domain
into two distinct sets. Each leaf node of the tree is labeled with
a class yj . It is worth noting that a single class may occur at
more than one leaf.

In order to classify an input using a classification tree, one
starts at the root node and walks down the tree until a leaf
node is reached. At each interior node, the decision which
edge to select is determined by the partition to which the
corresponding input value belongs. Finally, the class label
of the leaf node determines the result of the classification
task. In the following, we will focus on the most common
form of classification trees as implemented in many libraries:
binary classification trees in which the partitioning at each
interior node is given by a comparison of the input value
with a threshold wi. The model of such a classification tree
is completely described by the structure of the tree, the input
values vi corresponding to each node, as well as the thresholds
wi applied at each node.

2) Random Forests: Classification trees usually suffer from
a high prediction variance and can easily suffer from overfit-
ting to their training set. In order to reduce the prediction
variance, random forests put together multiple noisy, but
approximately unbiased classification trees.

In general, a random forest consists of B classification
trees, where the number B is subject to tuning. The training
of a random forest is performed on a training dataset T =

{(~x1, y1), . . . , (~xn, yn)}, consisting of n samples together with
their corresponding class label. During the training, each tree
is grown on n randomly chosen (with replacement) training
samples using only a randomly chosen set of input predictors
(components of the training samples) K ✓ {1, . . . , len(~x)}.
This random subset of input predictors is what distinguishes
random forest from simple tree bagging and ensures the trees
to be de-correlated so that the same input predictors are not
used in all of the trees. This step is important to reduce the
correlation of the trees, which then enables further reduction
of the prediction variance [33].

Given a random forest model and an input ~v, the classifica-
tion algorithm evaluates each of the model’s trees individually.
Then, depending on the application, implementation or pref-
erence, the resulting class can be determined by plurality vote
(or majority vote for binary classification), averaging the class
predictions or providing class probabilities in terms of relative
vote counts.

B. Private Classification with Random Forests
Next, we introduce our construction that enables to securely

evaluate random forests between a third party and a querier.
More specifically, we do not want the querier (referred to as
client) to learn the structure of the trees, nor should the third
party (referred to as server) learn anything about the input
sample or the result of the classification.

We build our construction on top of the work of Bost et
al. [23] and extend it to work with random forests. In their
work, they introduced three major classification protocols,
namely for hyperplane decision, Naı̈ve Bayes, and classifi-
cation trees, all satisfying the constraint to keep both the
classifier model and the data confidential. Since classification
trees are an important component of random forests, we first
recap the details of the classification tree protocol, before
extending it to random forests.

It is important to note that the classifier is trained upfront
on data in the clear, whereas only the actual classification of
new samples is performed securely on encrypted data.

1) Cryptosystem and Notation: In the following, we will
rely on three different additively homomorphic public-key
cryptosystems. An additively homomorphic public-key en-
cryption scheme allows, given the two encrypted messages
Enc(a) and Enc(b), to compute Enc(a+ b) using a public-
key operation on the encrypted messages. Moreover, one of
our cryptosystems is a leveled fully homomorphic encryption,
which also allows to perform a bounded number of multi-
plications in sequence, i.e., to compute Enc(a · b) on the
encrypted messages. Bounded means that the cryptographic
scheme allows to evaluate polynomials only up to a certain
multiplicative depth L. Below, we list the cryptosystems we
use and also mention the corresponding plaintext spaces M :

1) the QR (Quadratic Residuosity) cryptosystem of
Goldwasser-Micali [36] (M = F2, bits),
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2) the Paillier cryptosystem [37] (M = ZN with N being
the public modulus of Paillier),

3) a leveled fully homomorphic encryption (FHE) scheme
based on the Brakerski-Gentry-Vaikuntanathan [38]
scheme as implemented by HELib [39] (M = F2).

We denote the client in our protocols by C and the server
by S. [b]A denotes a bit b encrypted by the QR scheme under
party A’s key (so only A can decrypt the message using her
secret key). Similarly, [[m]]A denotes an integer m encrypted
by the Paillier scheme, and [[[b]]]A denotes a bit b encrypted by
the leveled FHE scheme. SKs

A is used for party A’s secret key
for the encryption scheme Paillier (s = P ), QR (s = QR) or
leveled FHE (s = FHE), and PKs

A is the respective public
key. For a distribution D, a  D means that we assign a a
random sample from that distribution.

2) Cryptographic Assumptions and Adversarial Model:
The security of our protocol relies on the semantic secu-
rity [40] of the cryptosystems we use and, hence, also on the
well-studied assumptions underlying those systems, namely
the Quadratic Residuosity assumption, the Decisional Com-
posite Residuosity assumption, and the Ring Learning With
Errors (RLWE) assumption.

We prove our protocol to be secure in the two-party
computation framework for passive adversaries (or honest-but-
curious [40]), by relying on modular sequential composition
of smaller protocols as described below.

3) Building Blocks: Specifically, we will reuse existing
building blocks from the work of Bost et al. and also design a
new one that is needed for our protocol: changing encryption
ownership. Their work already introduced several smaller
building blocks, such as different comparison protocols on
encrypted data, or a protocol to evaluate the argmax function
on encrypted data. Those building blocks necessary for our
own construction are briefly reviewed hereunder, before we
introduce our own building blocks as well as the full con-
struction.

a) Comparison Protocols: Bost et al. introduce five
slightly different comparison protocols, two of which we
will need in our construction. Let A,B be two parties. A
has PKP

B ,PK
QR
B and B has the corresponding secret keys

SKP
B , SK

QR
B .

The first comparison protocol (referred to as (1) later)
assumes that A has two values [[a]]B , [[b]]B . This protocol then
allows to compare a and b, such that A learns [a  b]B and
B learns nothing about the comparison.

The second comparison protocol, (2), works the same way,
the only difference being that B also learns a  b.

More details as well as the other comparison protocols can
be found in [23].

b) argmax on Encrypted Data: Based on their compar-
ison protocol (2), Bost et al. develop a protocol to compute
the argmax on encrypted data. Let A,B be two parties. A
has k encrypted values ([[a1]]B , . . . , [[ak]]B) (where k is also
known to B) and wants to know the argmax over unencrypted
values (i.e., the index i of the largest value ai), but neither
party should learn anything else.

Hence, this protocol allows to compute argmax1ik ai
given only the values encrypted under B’s key. In particular,
during the computation, B should neither learn the values ai,
nor should B learn the order relations between the ai’s. The
full details of this protocol are described in [23].

c) Changing the Encryption Scheme: In order to convert
ciphertexts from one of the cryptosystems to another, Bost
et al. rely on a simple protocol to change the encryption
scheme. Since this protocol is crucial for essential parts of
our construction, we will provide a more detailed description
of the protocol.

First, we consider the case, for which Ms1 = Ms2 = F2,
i.e., the two cryptosystems have the same message space:
Let A,B be two parties, A having PKs1

B ,PKs2
B and a ci-

phertext c = Encs1(x). B has the corresponding secret keys
SKs1

B , SKs2
B . The goal is to re-encrypt x using the cryptosystem

s2, without B learning x.
Intuitively, the protocol works as follows. First, A uniformly

picks a random noise r  Ms1 , encrypts it using PKs1
B and

adds it to the ciphertext c, before sending the result to B. B
then decrypts the ciphertext to x + r 2 Ms1 , re-encrypts it
using SKs2

B and sends Encs2(x+ r) to A, who can strip off r
using the homomorphic property of s2. B only obtains x+ r,
which hides x information-theoretically (this can be seen as a
one-time pad).

For the second case, when Ms1 6= Ms2 , we only require the
transformation from Ms1 = F2 to Ms2 = ZN , i.e., from FHE
to Paillier. Here, the beginning of the protocol remains the
same and A obtains [[x � r]]B with x, r 2 F2. The important
difference to the previous case now arises when A wants to
strip off r 2Ms1 = F2 from the encryption. Since the additive
operation on F2 is � and on ZN is +, we have to emulate
� in Paillier’s message space. This can be easily done by
computing:

[[x]]B =

(
[[x� r]]B if r = 0

g([[x� r]]�1
B ) mod N2 if r = 1

Before giving the result to an adversary, who knows [[x �
r]]B , but not SKP

B , the obtained result has to be refreshed to
preserve semantic security. A pseudocode implementation as
well as the security and correctness proofs of this protocol can
be found in [23].

d) Private Evaluation of Classification Trees: The most
useful protocol is the one for privately evaluating a classifica-
tion tree. Here, the main idea is to represent the classification
tree as a polynomial P , whose output is the result of the
classification.

Let bi be the boolean outcome of a comparison between the
ith node’s input value vj and the corresponding threshold wi,
i.e., wi < vj . Then, given the class labels Y = {y0, . . . , yk},
one can express a classification tree by a polynomial. The
polynomial is constructed recursively by a procedure F(T ).
If T is a leaf node, F(T ) = y, where y is the class label at
the leaf T . If T is an internal node, and T1 is the child tree
in case the corresponding b is true, and T2 is the child tree in

10



case b is false, then F(T ) = bF(T1) + (1 � b)F(T2) is the
polynomial that evaluates T1 if b and T2 otherwise.

Using this polynomial, Bost et al. then introduce a protocol
to evaluate the tree, while revealing only the outcome and the
number of comparisons. Let S and C denote the server and
client respectively. First, S and C make use of the comparison
protocol (1), so that S learns the bits [bi]C for every node.
Then, they interact in the protocol to change the encryption
scheme from QR to FHE, obtaining [[[bi]]]C .

The server S can then evaluate the polynomial P using
the homomorphic properties of the FHE scheme. However,
since the plaintext space is only F2 and the class labels
potentially take more than one bit, we would have to evaluate
the polynomial for each bit individually. Fortunately, the so-
called SIMD slots of the FHE scheme (described in details
in [41]) allow the scheme to encrypt a vector of bits in one
ciphertext and evaluate the polynomial on the whole vector
at once, in parallel. Hence, for each class label yi, the server
encrypts its bit representation yi0, . . . , yil using these SIMD
slots to [[[yi0, . . . , yil]]]C and can evaluate the polynomial for
each bit in parallel.

The client can later decrypt the resulting class label and
convert it back to the normal integer representation. A more
detailed explanation, as well as proofs of correctness can be
found in [23].

e) Changing Encryption Owner: Next, we will introduce
our protocol to change the ownership of an encryption, which
we will need in order to apply the argmax protocol in a way
that only the client learns the result of the plurality vote.

Given two parties A and B, out of which A holds the en-
crypted message [[x]]B , we want B to hold the same encrypted
message, but this time under A’s key. However, neither A nor
B should learn the message x itself. In the following, we
design a protocol to meet this goal and provide the proof in
the appendix.

Let A have PKP
B , SK

P
A, [[x]]B and B have SKP

B ,PK
P
A. Then

A first blinds the encrypted message by uniformly sampling
a random noise r from the plaintext space, encrypting it and
adding it to the ciphertext. Then, A also encrypts r using his
own secret key and sends both [[x + r]]B and [[r]]A to B. B
then decrypts the first ciphertext to x + r, which hides x in
an information-theoretic way and encrypts it again using PKP

A.
Then B strips off r using the sent encryptions without learning
r itself and obtains [[x]]A.

The complete protocol is shown in Protocol 1.

Protocol 1 Changing Encryption Owner
Input: A : ([[x]]B , SK

P
A,PK

P
B), B : (PKP

A, SK
P
B)

Output: B : [[x]]A
1: A: uniformly pick a random noise r  MP = ZN

(Paillier’s message space), encrypt it using PKP
B and

compute [[x+ r]]B
2: A: encrypt r using SKP

A to [[r]]A
3: A: send ([[x+ r]]B , [[r]]A) to B
4: B: decrypt [[x+r]]B to get x+r and encrypt it using PKP

A

to [[x+ r]]A
5: B: compute [[x]]A = [[x+ r]]A · [[r]]�1

A using the homomor-
phic property

Theorem 1. Protocol 1 is secure in the honest-but-curious
model.

The proof of the theorem is provided in the appendix.
4) Private Random Forests: Now that we introduced all

building blocks necessary to privately evaluate a random for-
est, we first give an intuition of our protocol before presenting
its pseudocode in Protocol 2.

Intuitively, one could just evaluate each tree of a random
forest individually, given the protocol introduced by Bost et
al., and return the outcomes to the client. The client is then able
to compute the plurality vote or any metric she is interested
in. This, however, will not only leak the number of trees, but
most likely also the number of nodes within each tree to the
client. Indeed, the scheme of Bost et al. reveals the number
of comparisons, thus the number of inner nodes to the client.
We modify this idea to only leak the total number of trees and
the total number of nodes. Moreover, we extend it by giving
the option to only reveal the plurality-vote class to the client.
To this end, we do not evaluate one tree after another, but we
perform the evaluations of all trees in a batch, e.g., running the
comparison protocol for the bi’s of all trees in a row. This way,
the client cannot distinguish between different trees during the
evaluation.

In order to allow the protocol to only reveal the plurality-
vote class, we have to modify the protocol further. Intuitively,
for the server S to determine the plurality-vote class, S
needs to be able to count the votes for each class without
learning the actual outcomes of the trees. We can achieve
this by slightly changing the way the class labels are encoded
into the SIMD slots: Instead of encoding each integer class
label as its binary representation, we encode a class label
yi by only setting the ith bit to 1. While encoding k labels
into a binary representation needs only dlog2(k)e + 1 bits,
our method will take exactly k bits. However, if enough
SIMD slots compared to the number of classes are available,
this should not have a substantial effect on the protocol’s
performance. More specifically, a class label yi is now encoded
as (yi1, . . . , yik) with yij = 1 if i = j and 0 otherwise.

After obtaining the outcomes of all trees, the server and
client interact to change the outcomes’ encryption schemes
from FHE to Paillier, resulting in ciphertexts for each outcome
and class label [[yij ]]C for i 2 {1, . . . , n}, j 2 {1, . . . , k},
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Protocol 2 Evaluate a Random Forest
Input: Client C : (SKP

C , SK
QR
C , SKFHE

C ,PKP
S ,~v), Server S :

(PKP
C ,PK

QR
C ,PKFHE

C , SKP
S ,F = {t1, . . . , tn})

Output: Client C : the outcome of evaluating F on ~v in terms
of a plurality vote or the individual votes

1: S: produces the polynomials P1, . . . , Pn for each tree in
{ti}ni=1

2: C: sends the encrypted query [[v0]]C , . . . , [[vm]]C to S
3: S and C perform the comparison protocol (1) on a shuffled

order of the nodes, so that S obtains [bi]C for every node
in the trees

4: S: changes the encryption obtaining [[[bi]]]C
5: S: computes each class label yi by setting only the ith bit

to 1 and encrypts the class labels using FHE and SIMD
slots to [[[yi1, . . . , yik]]]C with yij = 1 if i = j and 0

otherwise
6: S: evaluates the polynomials using the fully homo-

morphic encryption, obtaining the encrypted outcomes
{[[[yj1, . . . , yjk]]]C}nj=1 for each tree

7: if C is allowed to get all individual outcomes then
8: S: rerandomizes the encrypted outcomes, shuffles their

order and sends them to C, who can decrypt them
9: else

10: S: rerandomizes the encrypted outcomes and changes
their encryption scheme to Paillier, resulting in [[yij ]]C
for i 2 {1, . . . , n}, j 2 {1, . . . , k}

11: S: sums the bits for each class separately, obtaining
[[

Pn
i=1 yij ]]C =

Pn
i=1[[yij ]]C for every j 2 {1, . . . , k},

effectively computing the vote counts of each class
12: S and C change the ownership of the vote counts, so

that C obtains [[

Pn
i=1 yij ]]S using our protocol

13: C and S perform the argmax protocol, so that C learns
only the outcome of the plurality-vote class

14: end if

where yij = 1 if the outcome of the ith tree was class j
and yij = 0 otherwise. This encoding allows to sum up all
votes for each class (or vote count), so that the server obtains
[[

Pn
i=1 yij ]]C using Paillier’s homomorphic property.

However, we cannot directly apply the argmax protocol
as this would reveal the classification result to the party
holding the ciphertexts, i.e., the server. Hence, we leverage our
encryption ownership protocol to transfer the vote counts to the
client under the server’s key. The client thus has [[

Pn
i=1 yij ]]S ,

which allows him to determine the plurality-vote class by
applying the argmax protocol.

The complete protocol is provided in Protocol 2.

Theorem 2. Protocol 2 is secure in the honest-but-curious
model.

We refer to the appendix for the proof.

VIII. EVALUATION OF THE PRIVATE CLASSIFIER

Now that we have introduced our protocol for private clas-
sification on random forests, we will evaluate its performance

on a dataset and classifier used in practice. More specifically,
we base our performance evaluation on MethPed [34], [42],
a random forest classifier for the identification of pediatric
brain tumor subtypes based on DNA methylation data, which
is available as an R package. From this package, we extract
their random forest model and feed it into our protocol
implementation for the performance evaluation.2

MethPed, in its standard configuration, trains a random
forest model of 1000 trees based on its original training data,
consisting of 472 clinically diagnosed brain tumor cases after
data cleaning and k-nearest neighbor imputation of missing
values [42]. The DNA methylation samples have been col-
lected from several datasets, all of which are publicly available
on the GEO database (GEO accession numbers GSE50022,
GSE55712, GSE36278, GSE52556, GSE54880, GSE45353
and GSE44684). The random forest is then trained on a total of
900 methylation sites, which were shown to yield the highest
predictive power in a large number of regression analyses.

Our protocol implementation is based on the original im-
plementation of the work of Bost et al.3. We extended it
by implementing the protocol for changing the encryption
scheme from FHE to Paillier, as well as by adding our
own protocol for changing the ownership of the encryption.
Moreover, we fully implemented the random forest classi-
fication protocol (Protocol 2) and tested its correctness on
sample inputs. Then, we ported the MethPed classifier into
our implementation and included two methylation samples to
evaluate the classifier on. The implementation of our private
random forest classifier is written in C++ using GMP4, Boost,
Google’s Protocol Buffers5, and HELib [39]. The source code
of our implementation can be found at https://github.com/
paberr/ciphermed-forests.

In order to represent the methylation levels as integers in
our protocol, we multiply them by 10

8 and store the result as
an integer. Since the data we used is available at a precision
of eight digits after the decimal point and methylation values
are bounded by the range [0, 1], we do not lose any precision.

A. Evaluation Setup

To evaluate the performance of our protocol, we ran the
client and server of the classification task on different ma-
chines, both on the same network and on different networks.
One client was run on a local computing server with ap-
proximately 775 GB RAM and four Intel Xeon E5-4650L
processors, providing 64 cores (with hyperthreading enabled)
running at 2.60 GHz. Another client was run on an Amazon
AWS instance of the type r4.2xlarge with 61 GB RAM
and 8 Intel Xeon E5-2686 v4 vCPUs and a network bandwidth
up to 10 gigabit located in Frankfurt, Germany. The server
was run on a local computing server with approximately
1.55 TB RAM and four Intel Xeon E7-8867 processors,

2The R implementation and the used methylation sites are available at
http://bioconductor.org/packages/devel/bioc/html/MethPed.html.

3Available at https://github.com/rbost/ciphermed.
4https://gmplib.org
5https://code.google.com/p/protobuf/
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Fig. 9. Duration of different protocol steps on the client side for varying
number of trees and both protocol variations.

Fig. 10. Duration of different protocol steps on the server side for varying
number of trees and both protocol variations.

providing 128 cores (with hyperthreading enabled) running at
2.50 GHz. Since our implementation does not make use of any
multithreading technique, we used the large number of cores
to run multiple experiments, i.e., classification tasks, at once.

Similar to Bost et al., we also used 1024-bit cryptographic
keys and chose the statistical security parameter � to be 100.
HELib was configured to use 80 bits of security, roughly
corresponding to a 1024-bit asymmetric key [23].

B. Performance Evaluation
We evaluate our protocol for a varying number of trees

n 2 {1, 2, . . . , 9, 10, 20, . . . , 90, 100, 200, . . . , 400, 500} and
two independent classification queries provided in the Meth-

Ped R package [42]. We restricted the number of trees to a
maximum of 500 in order to keep the computational costs
low. We can still estimate the cost of running our protocol
with 1000 trees by the general trend as seen in the following.
Moreover, we evaluate both versions of our protocol, the
first revealing only the plurality-vote class to the client, and
the second revealing one outcome per tree to the client.
For n  100, we classify each of the samples five times,
resulting in a total of 10 executions for each of our protocol
instantiations. For n > 100, we classify each of the samples
only once, due to the increased computational costs. The trees
used for the classification consist of between 16 and 37 inner
nodes, with an average of around 25 inner nodes.

In the following figures, a solid line is used for operations
common to both our protocol instantiations, a dashed line is
used for the instantiation returning the plurality-vote class, and
a dotted line is used for the one outputting the outcome for
each tree. The performance evaluation of common operations
groups together the results of both instantiations, yielding 20

executions if n  100, and 4 executions if n > 100.
Fig. 9 depicts the performance evaluation on the client side,

both axes scaled logarithmically. Generally, the computational
costs of most of our protocol steps scale approximately linearly
in the number of trees. Only changing the ownership of
the encryption and performing the argmax seem to have a
constant execution time. These two blocks scale linearly with
the number of class labels, which are fixed (to the 9 types of
brain tumors) in our experiments.

Next, we compare the execution time of both protocol in-
stantiations. We see that both, helping to change the encryption
scheme of the trees’ outcomes from FHE to Paillier and
retrieving all the tree’s outcomes in the FHE cryptosystem,
unexpectedly take almost the same amount of time, since
essentially the same operations are required. Performing the
plurality vote protocol then only adds a constant computational
burden on the client’s side, only negligibly increasing the total
computation time.

In Fig. 10, we analyze the same scenarios on the server
side. Unsurprisingly, the relationships between the number
of trees in the random forest and the computational costs
are the same as for the client. It is worth noting that the
computationally most expensive operation is by far the FHE
evaluation of the polynomials. Evaluating the polynomials
takes almost an order of magnitude more time than the second
most expensive protocol step. Thus, minimizing the number of
trees and potentially also the number of inner nodes is a main
concern when applying our protocol. Moreover, parallelizing
the evaluation of the polynomials is a possible improvement,
which we did not explore in our implementation.

In terms of the amount of exchanged data and the number
of interactions, both protocol instantiations seem to be more or
less equivalent as shown in Fig. 11. Revealing the individual
outcomes to the client is not noticeably different from perform-
ing the plurality vote protocol. While time is mostly the major
concern when running a classification task, the amount of data
exchanged over the network should not be underestimated. For
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Fig. 11. Data exchange and number of interactions for varying number of
trees and both protocol variations.

example, evaluating 50 trees involves exchanging around 0.67
GB of data over the network. Increasing the number of trees
to 100, involves around 1.33 GB of data exchange.

Finally, in Fig. 12, we study the total time to run the
protocol on the server side (excluding the time for sending
packets over the network) in comparison with the accuracy of
the random forest built on the given number of trees. The
accuracy was determined based on the out-of-bag samples
during the training phase and averaged over 10 different runs.
Since our private classification uses the same precision for
the methylation values as the R implementation and builds on
exactly the same trees, the accuracy provided by our private
classification technique is the same. While the computational
costs clearly increase approximately linearly in the number
of trees, the accuracy does not. While 1000 trees provide
an accuracy of 98.3%, 50 trees are already sufficient to
provide an accuracy of 97.6% at only an estimated 5% of the
computational cost. We also depict the communication time
between our Amazon AWS instance and the local computing
server for a smaller range of number of trees. Evaluating 50

trees takes in total less than a hour, even when including the
time for sending and receiving packets over the internet. We
also evaluated the timing on the client’s side, which exhibits
the same behaviour as on the server’s side.

We emphasise that our current implementation does neither
aim at minimizing the number of interactions, nor does it
make use of pipelining of interactions. Based on the mea-
sured throughput between the Amazon AWS instance and our
computing server, we additionally depict the estimated optimal
communication time over the network in Fig. 12. Improving
the transmission of data in setup can potentially decrease the
communication time for 500 trees down to 50 seconds.

Since, in the current medical scenario, it usually takes
at least one day for a laboratory to analyze a sample, we
assume a similar computational limit on the classification.
Given such a limit, we conclude that a laboratory offering

Fig. 12. Total duration of a classification task and accuracy of the random
forest for varying number of trees and both protocol variations.

the privacy preserving analysis using our protocol would be
able to provide a good trade-off between computational costs
and accuracy. Moreover, the structure of random forests offers
a great potential to parallelize some of the operations (e.g.,
the polynomial evaluation), which we leave for future work.

We note that both protocol instantiations take approximately
the same time to run. While returning the selected classs for a
number of 50 trees is about 2 minutes faster than returning the
majority vote, this difference only accounts to about 6 minutes
for 100 trees and to about 23 minutes for 500 trees. Hence,
we suggest to select the instantiation based on the output the
client needs and the classifier information the server agrees to
reveal. If the client wants a fine-grained output to analyze the
distribution of the different classes, then he may request to get
access not to the plurality-vote class, but to the selected class
of each tree. However, this will leak more information about
the underlying random forest model than disclosing only the
plurality-vote class.

IX. RELATED WORK

We first summarize the two most closely related papers,
which report about the risk of identification of DNA methy-
lation data. The first (short) paper studying this risk shows
that part of the genotype (around 1,000 positions), as well
as alcohol consumption and smoking, can be inferred from
certain methylation data [43]. They warn that such genotype
inference could represent personally identifying information
but do not study further how genotypes could be matched
to methylation profiles, neither do they quantify with what
success such an attack could be carried out, and under which
conditions. Besides also identifying CpGs correlated with
genomic variants, Dyke et al. propose high-level guidelines
for methylation data disclosure that preserves privacy [9]. They
notably mention the restriction of access to methylation data
that are highly correlated with the genotype. Again, a concrete
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scenario is missing in order to evaluate the extent of the threat
as well as the protection provided by their countermeasure.

In a similar vein as our approach, Schadt et al. propose
a Bayesian method to predict from and match genotypes to
RNA-expression profiles [44]. By using 1,000 eQTLs (ex-
pression quantitative trait locus), they were able to correctly
match RNA expression profiles and genotypes of more than
300 individuals. Furthermore, they simulated dataset of 300
million individuals and showed that the matching accuracy was
still as high as 97%. Franzosa et al. study whether individuals
possess microbial patterns that could be used to uniquely
identify them [45]. Their results demonstrate that more than
80% of individuals can still be uniquely identified among a
population of hundreds of individuals, up to one year later in
the case of the gut microbiome. Backes et al. also study how
microRNA expression profiles can be tracked over time [46].
They demonstrate that such data can be linked with a success
rate of 90%, and that success rates remain constant up to one-
year time shift between two profiles. They further propose
two countermeasures: one based on hiding part of microRNA
expressions, and the other based on probabilistic sanitization
of the microRNA expression profiles. Backes et al. further
show that microRNA-based datasets are prone to membership
inference attacks by relying on the average statistics of their
microRNA expression values [47].

Gymrek et al. show that genotypes can be re-identified by
querying genetic genealogy databases (containing surnames)
with short tandem repeats on the Y chromosome [21]. By
combining the inferred surnames with other types of metadata,
such as age and state, they are able to trace back with high suc-
cess the identitites of multiple contributors in public databases.
Humbert et al. show that single nucleotide polymorphisms
(SNPs), which are more commonly available online, can be
also exploited to infer various phenotypic traits, such as eye
color or blood type, in order to further re-identify anonymous
genotypes, by typically using side channels such as online
social networks [22]. Both these works clearly illustrate that,
once the genotype corresponding to a DNA methylation profile
has been identified, it becomes relatively simple to recover the
real identity of the owner of this methylation profile.

Finally, there have been several works on privacy-preserving
disease prediction by relying on encrypted genomic data.
Bost et al. develop three main private classification protocols
(including decision trees) that protect both the patients’ data
and the classifier model [23]. They prove their protocols to
be secure in the honest-but-curious adversarial model, and
evaluate its performance on real medical datasets. We build
upon their constructions for our own private random forest
classifier. Duverle et al. propose a new protocol that enables to
privately compute statistical tests on patients’ data by relying
on exact logistic regression [48]. Their performance evaluation
shows that they can perform statistical tests with more than
600 SNPs across thousands of patients in several hours.

Ayday et al. have developed schemes for private disease
susceptibility tests by using homomorphic encryption and
proxy-encryption [24], [49]. The considered tests are based

on linear combinations of the SNPs (and other environmental
and clinial factors in [49]) contributing to a given disease, and
do not involve complex machine-learning classifiers. Danezis
and De Cristofaro improve upon the protocol of [24] by
using an alternative SNP encoding and make the patient-side
computation more efficient [26]. McLaren et al. use a similar
security architecture as the one initially proposed by Ayday
et al. to develop a practical privacy-preserving scheme of
genome-based prediction of HIV-related outcomes [25]. All
these papers assume an honest-but-curious adversary, which
is considered as realistic in the healthcare environment.

X. CONCLUSION

In this work, we have first demonstrated that DNA methy-
lation datasets can be re-identified by having access to an
auxiliary database of genotypes. Following a Bayesian ap-
proach, we have shown that we could reach an accuracy of
97.5% to 100% depending on the attack scenario, with a
few hundreds of methylation regions and genotype positions.
Then, by using a statistical test upon our matching outcomes,
we have empirically demonstrated that the very few wrongly
matched pairs could be correctly identified and rejected,
yielding a false-positive rate of 0 and true-positive rate of 1
for appropriate statistical thresholds. We have further shown
that our identification attack was very robust to a decrease
of methylation-meQTL pairs. When matching 52 methylation
profiles with 75 genotypes, we could reach a full accuracy
with only 13 meQTLs and methylation regions. We have also
observed that, especially when the targeted genotype is present
in the genotype dataset, the very few wrongly matched pairs
contain the genotype of the relative (in more than 90% of the
cases). Finally, we have shown that our attack was robust to
an increase of the database size to more than 2500 genotypes.

Facing this severe threat to epigenetic privacy, we have
proposed a novel cryptographic scheme for privately classify-
ing tumors based on methylation data. Our protocol relies on
random forests and homomorphic encryption, and it is proven
secure in the honest-but-curious adversarial model. We have
implemented our private classifier in C++ and evaluated its
performance on real data. We have shown that it can accurately
classify brain tumors in nine classes of tumor subtypes based
on 900 methylation levels in less than an hour. This consti-
tutes an acceptable computational overhead in the considered
clinical setting at hand. As a meta-consequence, we highly
recommend to remove DNA methylation profiles from public
databases as these are extremely prone to re-identification,
especially given that genotypes are also increasingly available
online, sometimes with their owners’ identifiers [11].

As future work, we plan to study if the identification
attack is as successful when meQTL-methylation pairs are
learned from a different tissue’s data. At the defense side,
we would like to study other machine-learning algorithms,
and to propose private schemes for those that are efficient
in classification with methylation data. Differentially private
approaches could also be studied, although differential privacy
may degrade utility too much for typical medical needs [50].
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APPENDIX

Although we assume the same security model as in the work
by Bost et al. [23], we recap here the necessary concepts.

A. Secure two-party computation framework
Both, our protocol to change the ownership of an encryption

and the protocol to privately evaluate a random forest model
are two-party protocols. Let the two parties be denoted by
A and B. In order to show that all computations are done
privately, we assume the honest-but-curious (semi-honest)
model as described in [40].

Let f = (fA, fB) be a (probabilistic) polynomial function
and ⇧ be a protocol computing f . Using A’s input a and B’s
input b, the two parties want to compute f(a, b) by applying
the protocol ⇧ with the security parameter �.

We denote the view of a party P 2 {A,B} dur-
ing the execution of ⇧ by the tuple VP (�, a, b) =

(1

�
; a; rP ;mP

1 , . . . ,m
P
t ) where r is P ’s random tape and

mP
1 , . . . ,m

P
t are the messages received by P . We define

the outputs of parties A and B for the execution of ⇧ as
Out⇧A(�, a, b) and Out⇧B(�, a, b). The global output is defined
as the tuple Out⇧(�, a, b) = (Out⇧A(�, a, b),Out⇧B(�, a, b)).

To ensure the private, secure computation, we require that
whatever A can compute from its interactions with B can be
computed from its input and output, yielding the following
security definition.

Definition 1. A two-party protocol ⇧ securely computes the
function f if there exist two probabilistic polynomial time
algorithms SA and SB (also called simulators) such that for
every possible input a, b of f ,

{SA(1
�, a, fA(a, b)), f(a, b)} ⌘c {VA(�, a, b),Out⇧(�, a, b)}

and

{SB(1
�, b, fB(a, b)), f(a, b)} ⌘c {VB(�, a, b),Out⇧(�, a, b)}.

⌘c means computational indistinguishability against proba-
bilistic polynomial time adversaries with negligible advantage
in the security parameter �.

B. Cryptographic assumptions
In this section, we briefly review the cryptographic assump-

tions underlying the cryptosystems we use.

Assumption 1 (Quadratic Residuosity Assumption [36]).
Let N = p ⇥ q be the product of two distinct odd
primes p and q. Let QRN be the set of quadratic
residues modulo N and QNRN = {x 2 Z⇤

N |
x is not a quadratic residue modulo N , but JN (x) = +1}
be the set of quadratic non residues, where JN (x) is the
Jacobi symbol.

{(N,QRN ) | |N | = �} and {(N,QNRN ) | |N | = �} are
computationally indistinguishable with respect to probabilistic
polynomial time algorithms.

Assumption 2 (Decisional Composite Residuosity Assump-
tion [37]). Let N = p⇥ q with |N | = � be the product of two
distinct odd primes p and q. We call z a N th residue modulo
N2 if there exists y 2 ZN2 such that z = yN mod N2.
N th residues and non N th residues are computationally
indistinguishable with respect to probabilistic polynomial time
algorithms.

Assumption 3 (RLWE [38]). Let f(x) = xd
+ 1 where d =

d(�) is a power of 2. Let q = q(�) � 2 be an integer. Let
R = Z[x]/(f(x)) and let Rq = R/qR. Let � = �(�) be a
distribution over R. The RLWEd,q,� problem is to distinguish
between two distributions: In the first distribution, one samples
(ai, bi) uniformly from R2

q . In the second distribution, one first
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draws s  Rq uniformly and then samples (ai, bi) 2 R2
q

by sampling ai  Rq uniformly, ei  �, and setting bi =

ai ·s+ei. The RLWEd,q,� assumption is that the RLWEd,q,�

problem is infeasible.

C. Modular Sequential Composition
In order to ease the security proof of our construction, we

rely on sequential modular composition as defined in [51]. The
idea is that two parties run a protocol ⇧ and use calls to an
ideal functionality f while running ⇧. This can be imagined
as A and B privately computing f by sending their inputs
to a trusted third party T and receiving the results from it.
If we can now show that ⇧ respects security and privacy in
the honest-but-curious model and if we have a protocol ⇢ that
securely and privately computes f in the same model, we can
replace f by executions of ⇢ in ⇧. The resulting protocol ⇧⇢

is then still secure in the aforementioned model.
We call (f1, . . . , fm)-hybrid model the semi-honest model

augmented with an incorruptible trusted party T for evaluating
the functionalities. The parties A and B run a protocol ⇧ that
contains calls to T for these functionalities. For each call,
the parties send their input to T and wait until they receive
the respective results. It is crucial that both parties must not
communicate until receiving the result, since we only consider
sequential composition here. T does not keep state between
different calls to the functionalities. Therefore the protocol
may contain multiple calls even for the same function, which
all are independent.

Let ⇧ be a two-party protocol in the (f1, . . . , fm)-hybrid
model and ⇢1, . . . , ⇢m be secure protocols in the semi-honest
model computing f1, . . . , fm. We define ⇧

{⇢1,...,⇢m} as the
protocol where all ideal calls of ⇧ have been replaced by
executions of the corresponding protocol: if party Pj needs to
compute fi with input xj , it halts, starts an execution of ⇢i
with the other party, gets the result �j from ⇢i and continues
as if �j was received from T .

Theorem 3 (Modular Sequential Composition Theorem [51],
[52]). Let f1, . . . , fm be two-party probabilistic polynomial
time functionalities and ⇢1, . . . , ⇢m be protocols that compute
respectively f1, . . . , fm in the presence of semi-honest adver-
saries.

Let g be a two-party probabilistic polynomial time func-
tionality and ⇧ a protocol that securely computes g in the
(f1, . . . , fm)-hybrid model in the presence of semi-honest
adversaries.

Then ⇧

⇢1,...,⇢m securely computes g in the presence of semi-
honest adversaries.

D. Changing Encryption Owner
Proof of Theorem 1. The function f this protocol computes
is:

f(([[x]]B , SKA,PKB), (PKA, SKB)) = (;, [[x]]A)

For the sake of simplicity, we do not take into account the
randomness used for the encryptions of r for A and c0 =

x + r for B. The distribution of these coins for one party

is completely independent of the other elements taken into
account in the simulations, so we omit them in our security
proof.
A’s view is VA = (SKA,PKB , [[x]]B ; r; ;). A does not

output anything. The simulator SA(SKA,PKB , [[x]]B) runs as
follows:

1) Picks uniformly at random r̃  MP .
2) Outputs (SKA,PKB , [[x]]B ; r̃; ;)

Since r and r̃ are sampled from the same distribution, inde-
pendently from any other parameter,

{(SKA,PKB , [[x]]B ; r̃; ;), f([[x]]B , SKA,PKB ,PKA, SKB)} =

{(SKA,PKB , [[x]]B ; r; ;), f([[x]]B , SKA,PKB ,PKA, SKB)}.

Moreover, it holds that

{(SKA,PKB , [[x]]B ; r; ;), f([[x]]B , SKA,PKB ,PKA, SKB)} =

{(SKA,PKB , [[x]]B ; r; ;), (;, [[x]]A)}

and we can conclude

{SA(SKA,PKB , [[x]]B), f([[x]]B , SKA,PKB ,PKA, SKB)} ⌘c

{VA([[x]]B , SKA,PKB ,PKA, SKB),

Out([[x]]B , SKA,PKB ,PKA, SKB)}.

B’s view is VB = (PKA, SKB ; [[x+ r]]B , [[r]]A). B outputs
[[x]]A. We build a simulator SB(PKA, SKB) as follows:

1) Pick uniformly at random r̃  MP and c̃ MP .
2) Generate the encryptions [[r̃]]A and [[c̃]] using PKA.
3) Output (PKA, SKB ; [[c̃]]B , [[r̃]]A)

By semantic security of the encryption scheme (in our concrete
case the Paillier cryptosystem), it holds that (proof see below)

{(PKA, SKB ; [[c̃]]B , [[r̃]]A), f([[x]]B , SKA,PKB ,PKA, SKB)} ⌘c

(4)
{(PKA, SKB ; [[x+ r]]B , [[r]]A), f([[x]]B , SKA,PKB ,PKA, SKB)}

(5)

and hence (using also the correctness of the scheme)

{SB(PKA, SKB), f([[x]]B , SKA,PKB ,PKA, SKB)} ⌘c

{VB([[x]]B , SKA,PKB ,PKA, SKB),

Out([[x]]B , SKA,PKB ,PKA, SKB)}.

We will prove the computational indistinguishability of
(4) and (5) in more detail by giving a reduction to the
semantic security. To this end, we assume that we have a
distinguisher D that can distinguish (4) and (5). Specifically,
given {(PK, SK0, [[y]]SK0 , [[r]]SK), [[x]]SK} D outputs 1 if y, r and
x are independent uniformly random values and 0 if r = y�r0
for a random r0 and x = y � r = r0. Then, we construct a
reduction R as follows:

1) On input PK, generate a new key pair (SK0,PK0
)  

KeyGen(1�).
2) Pick uniformly at random y, r̃  M .
3) Choose challenger messages m0 = y � r̃, m1 = r̃ and

give them to the semantic security challenger.
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4) Receive c from the challenger, compute [[r̃]]PK and query
the distinguisher D({(PK, SK0, [[y]]SK0 , c), [[r̃]]PK}),
which returns b.

5) Return b to the challenger.

Since we simulate both cases ((4) and (5)) perfectly to the
distinguisher, its success probability in distinguishing (4) and
(5) transfers exactly to our reduction in the semantic security
game. Since Paillier encryption is shown to be semantically
secure under the Decisional Composite Residuosity Assump-
tion, the distinguisher must have at most negligible success
probability. And hence our scheme is secure.

E. Private Random Forest Evaluation

The correctness of our protocol follows from the correctness
of the private classification tree protocol in [23]. Moreover, we
will provide a security proof for the protocol revealing only
the plurality-vote class. Since our second protocol instantiation
– revealing all trees’ outcomes – is essentially only a shorter
version of the main protocol, we do not provide a separate
security proof for this protocol.

Proof of Theorem 2. Let A be the server S and B be the client
C. We prove the security of our protocol (see Protocol 2) in
the hybrid model using the following 5 ideal functionalities,
which we let execute by a trusted third party:

• the comparison protocol in step 3:
f1([[x]]B , [[y]]B , l, SK

QR
B ,PKQR

B , SKP
B ,PK

P
B) = ([x 

y]B , ;)
• the protocol to change the encryption scheme in step 4:

f2([b]B , SK
QR
B ,PKQR

B , SKFHE
B ,PKFHE

B ) = ([[[b]]]B , ;)
• the protocol to change the encryption scheme in step 10:

f3([[[y1, . . . , yk]]]B , SK
FHE
B ,PKFHE

B , SKP
B ,PK

P
B) =

({[[y1]]B , . . . , [[yk]]C}ki=1, ;)
• the protocol to change the ownership of the encryption

in step 12:
f4([[x]]B , SK

P
A,PK

P
B ,PK

P
A, SK

P
B) = (;, [[x]]A)

• the argmax protocol in step 13:
f5({[[ai]]A}ki=1, l, SK

P
A,PK

P
A, SK

QR
A ,PKQR

A ) =

(;, argmaxi{ai}ki=1)

We will conclude using Theorem 3, our own security proofs
for those steps, as well as the proofs in [23].

The whole protocol computes the function:

f({Pi}ni=1, {wh}h, {[[vi]]B}gi=1, l,

SKP
A,PK

P
A, SK

QR
A ,PKQR

A ,

SKP
B ,PK

P
B , SK

QR
B ,PKQR

B ,

SKFHE
B ,PKFHE

B )

where {Pi}ni=1 are the polynomials, {wh}h are the thresholds
for each inner node, g is the number of features of the
client’s sample, {[[vi]]B}gi=1 is the input by the client. fA
returns nothing, while fB returns the plurality-vote class of
the random forest evaluation.

A’s view now is:

VA = ({Pi}ni=1, {wh}h, {[[vi]]B}gi=1, l,

SKP
A, SK

QR
A ,PKP

B ,PK
QR
B ,PKFHE

B ;

coins;
{[bh]B}h, {[[[bh, . . . , bh]]]B}h,
{[[yij ]]B}i2{1,...,n},j2{1,...,k})

where coins is the random tape for encryptions and {[bh]B}h
the comparison result for each node. We simulate A’s real
view with the following simulator SA:

1) Generate a random bit ˜bh for each inner node in the
random forest.

2) Generate random bits yij for i 2 {1, . . . , k}, j 2
{1, . . . , n}.

3) Generate a random tape ĉoins of the required length.
The length can be determined based mainly on the
polynomials, which encode the number of trees, number
of classes and the number of nodes in the tree.

4) Output

H0 = ({Pi}ni=1, {wh}h, {[[vi]]B}gi=1, l,

SKP
A, SK

QR
A ,PKP

B ,PK
QR
B ,PKFHE

B ;

ĉoins;

{[˜bh]B}h, {[[[˜bh, . . . ,˜bh]]]B}h,
{[[ỹij ]]B}i2{1,...,n},j2{1,...,k})

Since ĉoins and coins come from the same distribution, H0

is indistinguishable from:

H1 = ({Pi}ni=1, {wh}h, {[[vi]]B}gi=1, l,

SKP
A, SK

QR
A ,PKP

B ,PK
QR
B ,PKFHE

B ;

coins;

{[˜bh]B}h, {[[[˜bh, . . . ,˜bh]]]B}h,
{[[ỹij ]]B}i2{1,...,n},j2{1,...,k})

Moreover, by the semantic security of QR and FHE (we
abstain from the trivial reduction proof here), we can deduce
that H1 is computationally indistinguishable from:

H2 = ({Pi}ni=1, {wh}h, {[[vi]]B}gi=1, l,

SKP
A, SK

QR
A ,PKP

B ,PK
QR
B ,PKFHE

B ;

coins;
{[bh]B}h, {[[[bh, . . . , bh]]]B}h,
{[[ỹij ]]B}i2{1,...,n},j2{1,...,k})

And by the semantic security of Paillier, we get that H2 is
computationally indistinguishable from:

H3 = ({Pi}ni=1, {wh}h, {[[vi]]B}gi=1, l,

SKP
A, SK

QR
A ,PKP

B ,PK
QR
B ,PKFHE

B ;

coins;
{[bh]B}h, {[[[bh, . . . , bh]]]B}h,
{[[yij ]]B}i2{1,...,n},j2{1,...,k})
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Hence, we showed that

VA({Pi}ni=1, {wh}h, {[[vi]]B}gi=1, l,

SKP
A,PK

P
A, SK

QR
A ,PKQR

A ,

SKP
B ,PK

P
B , SK

QR
B ,PKQR

B ,

SKFHE
B ,PKFHE

B )

⌘cSA({Pi}ni=1, {wh}h, {[[vi]]B}gi=1, l,

SKP
A, SK

QR
A ,PKP

B ,PK
QR
B ,PKFHE

B )

B’s view is

VB = ({vi}gi=1, l, c, n, k

PKP
A,PK

QR
A , SKP

B , SK
QR
B , SKFHE

B ;

coins;

{[[
nX

i=1

yij ]]A}nj=1, argmax

j
{

nX

i=1

yij}nj=1)

where c is the number inner nodes over all trees, n is the
number of trees, k is the number of classes, [[

Pn
i=1 yij ]]A is

the encrypted vote count per class and argmaxj{
Pn

i=1 yij}
is the result of the argmax protocol and hence the output of
B.

We simulate B by the simulator SB as follows:
1) Generate n random Paillier encryptions {[[ỹj ]]A}nj=1.
2) Generate a random value between v  {1, . . . , n}.
3) Generate a random tape ĉoins of the required length,

which can be determined by c, n and k.
4) Output

H 0
0 = ({vi}gi=1, l, c, n, k

PKP
A,PK

QR
A , SKP

B , SK
QR
B , SKFHE

B ;

ĉoins;
{[[ỹj ]]A}nj=1, v)

Given that ĉoins and coins both are sampled from the same
distribution with the same length, we can conclude that H 0

0 ⌘c

H 0
1, with H 0

1 below:

H 0
1 = ({vi}gi=1, l, c, n, k

PKP
A,PK

QR
A , SKP

B , SK
QR
B , SKFHE

B ;

coins;
{[[ỹj ]]A}nj=1, v)

Next, we show the indistinguishability of H 0
1 and VB by

giving a reduction to the semantic security of Paillier. To
this end, we assume that we have a distinguisher D that can
distinguish H 0 and VB . Specifically, given

({vi}gi=1, l, c, n, k

PKP
A,PK

QR
A , SKP

B , SK
QR
B , SKFHE

B ;

coins;
{[[yj ]]A}nj=1, v)

D outputs 1 if v = argmaxj{yj}nj=1 and 0 otherwise. Then,
we construct a reduction R as follows:

1) On input PK, pick uniformly at random x, y, z  M ,
such that x 6= y 6= z.

2) Order the chosen values (w.l.o.g., we from here on
assume x < y < z).

3) Generate new keys PKQR
A , SKP

B , SK
QR
B , SKFHE

B .
4) Choose challenger messages m0 = x, m1 = z and give

them to the semantic security challenger.
5) Receive c from the challenger and

query the distinguisher D(;, 0, 0, 2, 0,
PK,PKQR

A , SKP
B , SK

QR
B , SKFHE

B ; ;; {[[y]]PK, c}, 2),
which returns b.

6) Return b to the challenger.
Since we simulate both cases perfectly to the distinguisher,
its success probability transfers exactly to our reduction in the
semantic security game. Since Paillier encryption is shown
to be semantically secure under the Decisional Composite
Residuosity Assumption, the distinguisher must have at most
negligible success probability.

Given the correctness of the protocol as well as the com-
putational indistinguishability of both simulators and views,
we can apply Theorem 3. We replace the ideal calls by our
provable secure building blocks. Theorem 3 then gives us the
security of our scheme in the semi-honest model.
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