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ABSTRACT
The realm of digital health is experiencing a global surge, with

mobile applications extending their reach into various facets of

daily life. From tracking daily eating habits and vital functions to

monitoring sleep patterns and even the menstrual cycle, these apps

have become ubiquitous in their pursuit of comprehensive health

insights. Many of these apps collect sensitive data and promise users

to protect their privacy – often through pseudonymization. We

analyze the real anonymity that users can expect by this approach

and report on our findings. More concretely:

(1) We introduce the notion of conditional anonymity sets de-

rived from statistical properties of the population.

(2) We measure anonymity sets for two real-world applications

and present overarching findings from 39 countries.

(3) We develop a graphical tool for people to explore their own

anonymity set.

One of our case studies is a popular app for tracking the men-

struation cycle. Our findings for this app show that, despite their

promise to protect privacy, the collected data can be used to identify

users up to groups of 5 people in 97% of all the US counties, allow-

ing the de-anonymization of the individuals. Given that the US

Supreme Court recently overturned abortion rights, the possibility

of determining individuals is a calamity.

1 INTRODUCTION
The global landscape of digital health is undergoing an unprece-

dented surge, fueled by legislative changes facilitating broader ac-

cess to health data for research and the exponential growth of

healthcare applications. According to a study by Fortune Business

Inside, the digital health application market is projected to sky-

rocket from $38.89 billion USD in 2021 to an astonishing $314.60

billion USD by 2028
1
. This surge, however, raises serious concerns

about the protection of sensitive user information, as these applica-

tions promise privacy safeguards while simultaneously accumulat-

ing vast datasets.

Despite these assurances, the frequent occurrence of data breaches

affecting massive user bases cannot be ignored [20, 30]. The after-

math of such breaches, estimated by IBM Security to cost an average
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of $10.10 million in the healthcare sector alone
2
, underscores the

urgent need for innovative privacy solutions.

It is noteworthy that many of these applications employ pseu-

donymization techniques in an attempt to protect user privacy.

Pseudonymization involves replacing personally identifiable infor-

mation with pseudonyms, rendering the data more challenging

but not impossible to directly attribute to individual users. An il-

lustrative example of such a recent data leakage is the case of the

GetHealth platform, where 60 million personal data records were

disclosed [29].

Our research ventures into the critical realm of privacy protec-

tion for applications handling vast sociodemographic and medical

datasets. In light of the escalating data breaches and the prevalence

of pseudonymization, we seek to address fundamental questions:

• How can we determine the individual anonymity level for users
of such apps?

• What is the typical anonymity level faced by users?

We address both questions. We introduce a novel and simple

mechanism to compute anonymity sets without having access to

the apps’ original data sets; we refer to this technique as conditional
anonymity sets. These sets are derived from publicly available sta-

tistical sources. We provide the tool VisualAnon3 to explore the

individual anonymity set for a large amount of countries.

We measure the effectiveness of our approach through the ex-

amination of two representative examples of such apps: the Flo

app and a (medical) data donation app. These case studies serve

as illustrative instances to evaluate the practical implications of

our methodology. Additionally, we present overarching findings

derived from a broader analysis, encompassing several countries

and providing a comprehensive understanding of the generalizabil-

ity and impact of our approach in the realm of digital health data

privacy.

1.1 Roe v. Wade—Privacy Matters
In the US, there are 11 states in which abortion has already been

made illegal, almost immediately followed by law enforcement

trying to access relevant sensitive information from various apps.

Facebook, for example, had to hand over private chat messages of

a 17-year-old girl living in Nebraska to the police. This allowed law

enforcement to charge the girl and her mother in an abortion case,

as the Guardian reported [11].

The Flo app is one of the most popular apps for tracking the

period. The app was downloaded over 300 million times and used

by roughly 50 million people every month. Flo advertises that the

app has ISO 270001 certification and refers to this certification as

2
https://www.ibm.com/reports/data-breach
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“the internationally recognized standard for information security
4
”.

This certificate suggests to the user that the data is safe and their

privacy is protected. A closer look at Flo’s privacy statement shows

that the app collects name, email address, year of birth, place of

residence, and associated location information, including time zone

and language. Flo states that they can infer the gender. Further-

more, the user may choose to share information like weight, body

temperature, menstrual cycle dates, and further information via,

e.g., Apple Health.

In view of the recent decision of the Supreme Court, collecting

this information is alarming as it allows the tracking of abortion. Flo

tries to solve this problem by introducing an anonymous mode [3]

in which the name, email, and technical identifiers get removed.

However, our conditional anonymity sets reveal that this is in-

sufficient. Due to the unequal distribution of the population density,

97% of the counties in the US have an average anonymity set size

of less than 5 for women of age 20-60. We shared our insights with

the Flo app developers.

1.2 Data Donation App
Another example is the data donation app of the Robert Koch Insti-

tute (RKI). The RKI is the leading institute in Germany that focuses

on the investigation and prevention of infectious diseases. More-

over, it is also responsible for nationwide health monitoring [8, 9].

Its data donation app collects health information and computes

a fever curve to predict further outbreaks and identify COVID

hotspots. More than 1 million people currently use the app, and it

collected over 400 million data records [2, 38]. The RKI advertises

the app as being pseudonymous – it uses generalization techniques

to protect the privacy of its users and assigns each user a unique

ID to associate new data with that user.

The collected attributes yield anonymity set sizes of less than

20 for only a bit more than 5% of the general population. This

number deteriorates quickly when considering simple additional

knowledge. For example, if we know that a target is a smartwatch

user, then this information yields anonymity sets smaller than 20

for more than 35% of the cases. Furthermore, the knowledge that a

target participated in the study of the RKI uniquely identifies 87% of

the participants. We shared our results with the RKI in responsible

disclosure.

1.3 Our Contribution
Our main contributions are as follows:

• We introduce the notion of conditional anonymity sets to

estimate the level of anonymity of individuals. These sets

are computed from publicly available statistics and thus do

not require access to the original data set.

• We present two real-world case studies, analyzing the con-

ditional anonymity sets on the Flo app in the USA and the

RKI’s data donation app in Germany.

• We have assembled statistical data from 39 countries all

over the world, covering over one billion people, allowing

us to globally measure anonymity on the internet using

conditional anonymity sets.

4
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• We evaluate the accuracy of our conditional anonymity sets

based on a fictional dataset of 102.5 million users.

• We develop an online tool called VisualAnon that builds

upon the collected data and allows users to estimate their

own anonymity level, and we actively develop VisualAnon.

VisualAnon is designed to serve a dual purpose: as well

as raising awareness, it is also a research tool, helping to

reveal how anonymity varies across different demographic

landscapes. It supports researchers and privacy advocates

by facilitating the assessment of de-identification risks in

different datasets. In addition, policymakers and application

developers can use VisualAnon to test and improve their

privacy protocols.

1.4 Ethics Discussion
All experiments presented in this work solely utilize publicly avail-

able data, as disseminated by the census bureaus of respective

countries. This data is anonymized and aggregated, and we only

perform secondary data analyses on it. Our methodology estimates

anonymity set sizes but cannot identify actual individuals. We do

not engage with nor process any form of personal or individual-

specific data
5
. The project gained ethics approval from the lead

institution’s review board.

2 RELATEDWORK
With a vast amount of data being created and collected, our society

has long identified the need for privacy as an existential right. Our

research community has since explored and developed ways to

protect our privacy in the digital age.

General Identification Attacks. Pioneered with the early work of

Latanya Sweeney, such approaches have been used in the past to

deanonymize people in the US [33] and in the context of videos [26].

The work of Sweeney showed how to deanonymize concrete per-

sons by combining a medical database and an election registry, and

the work of Narayanan matched videos from an anonymized Net-

flix database to the publicly available IMDB database. In contrast,

conditional anonymity sets provide a methodology for the compu-

tation of meaningful bounds for anonymity sets without access to

concrete datasets and solely based on publicly available data.

Data Reconstruction Attacks. Data reconstruction attacks (where

attackers aim to complete an incomplete dataset) differ from our

method for two main reasons. Firstly, our approach is based on

statistical data, unlike these attacks, which require specific par-

tial data sets. Second, while data reconstruction attacks focus on

identifying individuals with a certain probability, such as "John

Doe can be re-identified with probability x", our research estimates

anonymity within a group, such as "a person with these attributes

has an anonymity set of 5". Data reconstruction attacks have been

studied extensively [25, 28, 32]. Recently, the work by Rocher et

al. [31] demonstrates the application of machine learning to these

attacks. In addition, [31] presented an online tool to illustrate data

reconstruction attacks using machine learning with data from the

5
We use the term personal data in accordance with the ethics and data protection

guidelines of the European Commission (https://commission.europa.eu/system/files/

2020-06/5._h2020_ethics_and_data_protection_0.pdf)
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US, England, and Wales. The tool aims to answer a question differ-

ent from VisualAnon. Furthermore, the tool of Rocher et al. [31]

needs to run ML training with specific data for extension to other

countries. In contrast, Visual Anon covers 39 countries and operates

without the need to train machine learning models.

In a recent work [1], Michael Hawes explores a matching attack

focusing on the reconstruction of microdata from the US census.

The authors systematically reconstruct individual-level records

from published census tables by solving a system of equations

using mixed-integer linear programming. In a second step, the

authors match a personal data source file with the reconstructed

tables. Wewant to use this work to examine the differences between

conditional anonymity sets and reconstruction attacks.

Unlike the specific attack demonstrated in [1], conditional ano-

nymity sets estimate the likelihood of success for a wide range of
possible deanonymisation attacks without requiring actual recon-
struction of the dataset. This stems from the fact that conditional

anonymity sets estimate the biggest anonymity a user can hope

for by only revealing minimal data, regardless of how the actual

revealed data is used to break anonymity. In addition, conditional

anonymity sets can be computed only using statistical data with-

out relying on heavy computations. This contrasts reconstruction

attacks that rely on actual data sets and heavy computation.

In conclusion, the goal of conditional anonymity sets is to facili-

tate providing bounds and guidelines without directly compromis-

ing anonymity, while the goal of reconstruction attacks (thus also

the goal of [1]) is to show that people can actually be deanonymized

by running an attack on the anonymity.

Health Privacy. The privacy of health data is of paramount con-

cern due to the sensitivity of such data. Due to the large body of

work in this area, we can only touch on some of the more recent

work.

Furthermore, many applications of differential privacy to health

data exist. For example, in the area of pharmacogenetics, Fredrikson

et al. show that differential privacy can induce inadequate warfarin

dosing and expose patients to increased risk of mortality [19]. For

genetic data, genome-wide association studies have been a primary

concern, and many papers are studying the application of differen-

tial privacy for this use case [23, 36, 37, 39]. In epigenetics, Backes

et al. [14] and Berrang et al. [16] study linkage attacks like ours (but

on concrete datasets). Backes et al. [14] also provide suitable trade-

offs between utility and privacy for a local, differentially private

model.

3 MEASURING PRIVACY
The main goal of our work is to understand the impact of data

breaches for allegedly anonymized (medical) data. In this section,

we explore the impact of a data breach, beginningwith the definition

and formalization of a threat model. In this model, we assume the

attacker possesses two databases D1 and D2, out of which only

one is anonymized. The adversary’s goal is the computation of a

matching between both databases.

In many real-world applications and settings, the full amount of

data that is collected and anonymized is unknown and not made

public to the users. For example, the Flo app supports an anony-

mous mode where “Flo user [have] the option to access the app

without name, email address, and technical identifiers
6
”. But how

anonymous are the users in this setting? Since precise informa-

tion is missing, it is impossible to compute exact anonymity sets.

Nevertheless, the users should have an estimate of their degree of

anonymity by the (additional) information that they provide, such

as age in a certain range. We introduce conditional anonymity sets
(CAS) as meaningful bounds of the anonymity set size independent

of a concrete application. We derive conditional anonymity sets

from publicly available statistical information only.

3.1 Threat Model
Our approach estimates the potential success of a concrete at-

tacker. While the attacker is assumed to have access to two concrete

databases with user data, our estimates do not require actual ac-

cess to these databases. Instead, we demonstrate how to provide

meaningful bounds of the anonymity set sizes based on population

statistics only. We also show how these estimates relate to anony-

mity sets in concrete databases based on the addition of background

knowledge.

Databases: We assume that the adversary has access to two con-

crete databasesD1 andD2. One databaseD1 is not pseudonymous

and contains socio-demographic information as well as the real

identity of potential victims. Such as database can either be ob-

tained (maliciously) by data leakages, or it is a state actor who is

trying to de-anonymize some of its citizens. The other database D2

is anonymized and contains socio-demographic data of individuals

and additional attributes such as longitudinal health data. Due to

the anonymization process, the information in the second database

might be imprecise. As an example, consider the information that

the Flo app collects in its anonymous mode, where the age is stored

in buckets only.

Adversary: We focus on a PPT adversary A that may have some

auxiliary information or background knowledge and which tries to

link both the databases to de-anonymize an individual in D2 and

gain additional knowledge about individuals in D1. As a concrete

example, think about the prosecution trying to de-anonymize a

woman who has had an abortion. The prosecution has its own

database of citizens (D1) and forces the Flo application to reveal its

“anonymized” database (D2).

We measure the adversary’s success of de-anonymizing an indi-

vidual inD2 as the probability of them producing a correct link with

its entry in D1. For this purpose, we assume that every individual

in D2 is present in D1 – slightly abusing notation that is D2 ⊆ D1.

Since the adversary’s success would be 0 for any individual not

being part of D1, this assumption implicates a strictly stronger

adversary. We capture additional relationships between the two

databases in the form of auxiliary information about individuals in

D1.

Definition 3.1 (Adversary’s Success). Let D1,D2 be databases as

defined in our adversarial model. Let 𝑖 be an individual in D2 and

D2 (𝑖) be the data of this individual within the database. 𝜎 (𝑖) is
the corresponding entry of 𝑖 in D1, and by 𝜅 we denote auxiliary

information the adversary has. We define the adversary’s success

6
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in de-anonymizing an individual 𝑖 as

success(𝑖) = Pr[A(D2 (𝑖),D1, 𝜅) = 𝜎 (𝑖)],

where A is defined by the adversarial strategy.

To protect the privacy of a user 𝑖 , we want to minimize success(𝑖).
Note that this adversary has access to concrete databases and does

not rely on population statistics. Instead, we will use population

statistics to provide reliable estimates on success(𝑖).
The adversarial model we propose covers our case studies but is

also applicable more generally. As already mentioned, the databases

might originate from different data leakages. Alternatively, one of

the databases could have been collected by the adversary themselves

(a curious app provider, signup data from an insurance company,

or obtained from prosecution, etc.). D2 might have been published

for scientific purposes and could be part of a study.

Relevance of our adversarial model. Cyber attacks in the real

world clearly demonstrate that such databases are frequently ob-

tained by hacking [20, 30] or be made available by human mis-

take [29]. Data miners and brokers are trying to link such databases

and sell the resulting information in a “business worth billions” [35].

In one very recent instance, 60 million data records were leaked

from the GetHealth platform. Describing itself as a “unified solu-

tion to access health and wellness data from hundreds of wearables,

medical devices, and apps” [29], their platform achieves the same

goal as the framework used by most of the health applications. The

leaked data is similar in nature and included names, dates of birth,

weight, height, gender, and GPS logs, among others.

Adversarial strategy. When regarding databases containing un-

perturbed information, we assume an adversary who links an entry

from D2 to D1 by an exact matching of the overlapping attributes.

The adversary limits the choices by applying their auxiliary infor-

mation and, if multiple matches exist, chooses one of the remaining

matches at random. This corresponds to the adversarial strategy

maximizing the adversary’s success given that both databases con-

tain precise information (that may still be generalized into bins).

Using the random choice, whenever the adversary is uncertain

about the matching, allows us to assume adversaries that have no

background knowledge of the dataset. We want to emphasize that

our approach also works with more sophisticated metrics, such as

entropy (and min-entropy) (c.f. [18]). Yet, we will see in Section 4

that the random selection is predominantly performed on small sets

(e.g., this set size is below 5 for citizens of 97% of all US counties).

Therefore, we use random selection, which serves as a trade-off

between utility and precision.

3.2 Conditional Anonymity Sets
Given the adversarial model and the exact matching strategy de-

scribed in Section 3.1, it is easy to see that success(𝑖) is inversely
proportional to the number of individuals in D1 exposing the same

attributes as D2 (𝑖) and satisfying the auxiliary knowledge.

If there is only a single matching entry in D1 that is in line

with the auxiliary information, this has to be the correct link (since

D2 ⊆ D1). Hence, the adversary’s success is 1. If there are 𝑘 match-

ing entries in line with the auxiliary information, the adversary

randomly chooses one of them. The probability of choosing the

correct entry – and thus the adversary’s success – is
1

𝑘
. We say 𝑘 is

the size of the anonymity set for the attributes D(𝑖).

Definition 3.2 (Anonymity Set). Given a vector of attributes ®𝑥 and

a database D, we define the anonymity set for ®𝑥 as:

AD ( ®𝑥) = { 𝑗 | D( 𝑗) ∩
= ®𝑥},

where D( 𝑗) ∩
= ®𝑥 is defined as an exact match of all overlapping

attributes between D( 𝑗) and ®𝑥 .

We did not incorporate the auxiliary knowledge directly into

the notion of anonymity sets and will instead use it to filter the

database first. Given auxiliary information 𝜅 , we usually talk about

the anonymity sets AD′ ( ®𝑥), where D ′ = D|𝜅,®𝑥 is the subset of the

original database, which is in line with the background knowledge.

For example, if the adversary knows ®𝑥 is a smartwatch user

and the adversary knows which individuals in D are smartwatch

users, they can exclude all others to form D ′
. Using our previous

argumentation, we can reformulate the adversary’s success.

Proposition 3.3. Given an adversary A as defined in Section 3.1
with auxiliary knowledge 𝜅, an exact matching strategy yields an
adversary’s success of

success(𝑖) = |AD′ (D2 (𝑖)) |−1,

where D ′ = D1 |𝜅,D2 (𝑖) .

To protect the privacy of an individual 𝑖 , we want to minimize

the adversary’s success success(𝑖). Thus, the size of the anonymity

set 𝑘 =

���AD1 |𝜅,D
2
(𝑖 ) (D2 (𝑖))

��� is a good metric for the privacy of the

individual. This metric implies a form of 𝑘-anonymity for the set

of 𝑖’s attributes [34]. We can calculate 𝑘 from population statistics

only and do not require actual instantiations of D1 and D2. For

any possible combination of attributes in D2, we can estimate the

number of individuals in a given population who exhibit these

attributes.

This brings us to the definition of conditional anonymity sets.
Conditional anonymity sets estimate anonymity sets from pub-

lic population statistics. Given a particular instantiation ®𝑎 over

attributes 𝛼 (e.g., gender = female), a population statistic 𝜓 ( ®𝑎) re-
turns the number of people in this population P exhibiting these

attributes. It is also the size of the anonymity set of any such indi-

vidual with respect to the population: |AP ( ®𝑎) |.

Definition 3.4 (Conditional Anonymity Set). Let ®𝑏 denote an in-

stantiation over a non-overlapping set of attributes 𝛽 , such that

𝛼 ∩ 𝛽 = ∅. We define the conditional anonymity set AP ( ®𝑎 | ®𝑏) =
AP | ®𝑏 ( ®𝑎) as the anonymity set capturing the part of the popula-

tion with both these attributes. Given a conditional probability

distribution Pr[𝛽 | 𝛼], we can calculate its size as:

AP ( ®𝑎 | ®𝑏) = 𝜓 ( ®𝑎) · Pr
[
®𝑏 | ®𝑎

]
.

Cumulative Distribution Function (CDF). A Cumulative Distri-
bution Function (CDF) characterizes the probability that a random

variable 𝑋 assumes a value less than or equal to a given point 𝑥 ,

expressed as

CDF(x) = Pr[𝑋 ≤ 𝑥] .
950
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In the subsequent sections, we will assess the CDF function for the

distribution of Conditional Anonymity Sets (CAS) sizes. The CDF
facilitates the following insights:

• It enables the estimation of how many CAS are below a

specific threshold.

• The steepness of the CDF indicates a higher prevalence of

CAS for a given size, while a flatter CDF suggests a lower

count of CAS for the same size.

• When comparing CDFs for two CAS distributions, the dis-
parities between the CDFs highlight the differences between

the distributions. If a CDF is shifted toward the origin, it

indicates a relatively larger number of small CAS, while a
shift toward the positive axis indicates a prevalence of larger

CAS.

3.3 Comparison to Sweeney [33]
In pioneering work, Latanya Sweeney showed that matching two

databases, one anonymized and one with personally identifiable

information, is relatively easy. She also built an online platform
7

to measure anonymity when precise data about a subject, such as

their date of birth plus zip code, is leaked.

We generalize Sweeney’s basic idea from constructing intersec-

tions of precise data sets to computing intersections of distributions
over data sets. In contrast, we take the statistical distribution of peo-

ple living in an area in combination with the statistical information

about the age distribution in that area.

Because of Sweeney’s work, only bucketed information is pub-

lished these days, e.g., year of birth (or even decade of birth) rather

than the exact date of birth. However, our work shows this is often

insufficient because we can build intersections with the statistical

information provided by the governments. In many cases, these

resulting anonymity sets are very small.

3.4 Accuracy of Conditional Anonymity Sets
We evaluate the accuracy of conditional anonymity sets through a

comprehensive ground truth survey to ensure their effectiveness.

We first create a synthetic dataset for AnonLand, a fictional country

with a population of 102.5 million. The demographic attributes of

the dataset are generated based on specific distributions:

• The age distribution is modeled using a trapezoidal shape:

ages from 0 to 40 are uniformly distributed, while ages from

41 to 90 follow a triangular distribution, reflecting a more

varied age distribution in this range.

• Gender is assigned by sampling a uniformly random bit with

an equal chance of being male or female.

• Height follows a normal distribution, with an average (mean)

height of 180 cm for men and 175 cm for women, and a

standard deviation of 10 cm for both genders.

• Weight is normally distributed, with a mean of 80 kg for

males and 70 kg for females and a standard deviation of 10

kg for both genders.

• In order to accurately represent both densely populated and

sparsely populated areas, we divide the districts into five

7
https://aboutmyinfo.org

classes. Accordingly, we create five metropolises of five mil-

lion inhabitants each, 25 cities of one million inhabitants

each, 250 counties of 100,000 inhabitants each, 2,500 areas of

10,000 inhabitants each, and 2,500 villages of one thousand

inhabitants each.

In the second step, we conducted a census on the people of

AnonLand to derive statistics on the district population by gender

and age, as well as height and weight statistics per age and gender.

We do this census twice: once without applying differential privacy

and once applying laplacian noise with an epsilon of 𝜖 = 2 and a

sensitivity of 1 (for histogram queries).

Finally, we randomly selected five thousand random citizens (one

thousand per district class) and compared the real anonymity sets

of these citizens to the conditional anonymity sets estimated using

our methodology. We select a thousand inhabitants per district class

to evaluate the accuracy of CAS for both small and big RAS sizes.

3.4.1 The Impact of Differential Privacy. Our first observation is

that the size of a conditional anonymity set, which is computed

with noised data, differs only marginally from the CAS computed

on the plain data. For each of our 5000 test citizens, the noised CAS
differed no more than 0.2 from the unnoised CAS.

3.4.2 Accuracy of the CAS. To analyze the accuracy of the CAS,
we compare the CAS to the real anonymity set (RAS) by computing

the normalized error (CAS − RAS)/RAS, which we henceforth call

divergence. We depict the results for the divergence in Fig. 1.

Our first observation is that the CAS-RAS divergence narrows
down with increasing RAS size. The second observation is that the

absolute divergence exceeds the value 0.25 mainly for small RAS
sizes. We observe that the normalized error of the CAS is minimal

for RAS sizes above 25.

0 20 40 60 80 100
RAS size

1.0

0.5

0.0

0.5

1.0

1.5
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2.5

3.0

Va
lu

e

CAS-RAS Divergence for RAS < 2000
CAS-RAS Divergence for RAS > 0.25
CAS-RAS Divergence for RAS <= 0.25

Figure 1: CAS-RAS divergence below and above 0.25 for all
participants. For RAS sizes below 100, primarily isolated out-
liers above an absolute divergence of 0.25 exist.

Given that the normalized error for RAS values above 25 is min-

imal, we focus our analysis on the CAS when the RAS size is less
than 25. Figure Fig. 2 presents a boxplot illustrating the CAS scat-

ter for each RAS value. Additionally, we depict the ideal relation

where CAS = RAS. We observe that the median of all CAS values is
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Figure 2: Boxplot of the CAS per RAS for RAS sizes below 25.
The CAS is a narrow collar of the RAS.

mostly below the actual RAS size. Furthermore, the majority of the

boxes have narrow interquartile ranges around or below the ideal

line, indicating that CAS sizes are close to their corresponding RAS.
For a more detailed analysis of the accuracy of CAS, we provide
additional plots in Appendix B.

4 CASE STUDIES
There is a plethora of health applications on the market that all

collect similar data. This section shows that storing simple and

only slightly pseudonymized data in practical applications does not

provide sufficient privacy protection. The novelty here is that we

use our notion of conditional anonymity sets to estimate the level

of anonymity one can hope for, given the information provided to

the apps.

We exemplarily analyze two such apps in a case study: the Flo

and the RKI’s data donation app. The Flo app tries to predict the

user’s menstruation cycle by analyzing previous cycles, body tem-

perature, and other symptoms. The primary purpose of the RKI

app is to collect health data to predict and estimate the spread of

the coronavirus and to improve the early detection of hotspots by

calculating a fever curve.

4.1 Ovulation Apps in the US
Ovulation apps are widely recognized for their usefulness in helping

individuals understand and track their menstrual cycles. However,

the recent decision to outlaw abortion adds a new dimension to

the use of these apps. While they continue to serve their primary

purpose, the evolving legal landscape adds an unexpected layer of

significance, transforming them into potential security threats. In

this section, we assess the emerging threat to ovulation app users

in the US This assessment aims to shed light on the implications

and risks associated with using such apps, considering the broader

context of legal changes and their impact on reproductive health

decisions. We showcase this threat with the example of the Flo app,

one of the most widely used ovulation apps.

4.1.1 Flo App. The Flo app was downloaded over 300 million times

and used by roughly 50 million people monthly
8
. It provides mul-

tiple statistics over the user’s ovulation circle, like an ovulation

calculator, a period calculator, a pregnancy calculator, and a preg-

nancy due date calculator. As the Flo app is proprietary, no detailed

information about the data usage is publicly known. However, ac-

cording to the privacy policy [4], weight, body temperature, and

menstrual cycle dates are amongst the stored data. Furthermore,

the app allows the integration of data provided by external services

like Apple HealthKit or GoogleFit.

4.1.2 Dataset. Our primary data source is the United States Census

Bureau [13], which is responsible for conducting the official census

and providing comprehensive demographic statistics. Specifically,

we rely on the dataset derived from the American Community

Survey, referred to as table S0101. This dataset contains tuples

representing the attributes of the US population, including county,

sex, age, and count. While the American Community Survey dataset

provides the granularity necessary for our analysis, it includes

information on minors and lacks age group distinctions beyond 75.

As a result, our analysis focuses on age groups from 18 to 75. The

population counts in this dataset reflect the year 2021.

To enrich our analysis, we include data on the height and weight

of the US population from a separate source [27]. The Centers

for Disease Control and Prevention (CDC) dataset from a 2002

survey provides means and standard errors for weight and height

across gender and age groups. In particular, we assume that height

and weight are independent of the county of residence (but not of

the country). Our assumption is based on the normal distribution

of both height and weight around their respective means. While

height generally follows a normal distribution, weight exhibits

a slight right skew [22]. Nevertheless, for practical purposes, a

normal distribution serves as a reasonable approximation of body

weight [21]. To maintain physiological coherence, we restrict the

body mass index to the range of 17 to 30, effectively filtering out

implausible combinations of height and weight.

The American Community Survey provides data for only 840 of

the 3221 official counties. For the remaining counties, we calculate

averages by dividing the remaining state population by the number

of uncounted counties in that state, multiplying the result by the

number of age groups, and finally multiplying this by the mean

values of the height and weight distributions. As a result of the

calculation of these averages, the American Community Survey

already has coverage of the vast majority of the population in

the 840 counties. Consequently, for the counties missing specific

data, we fill each conditional anonymity set with these calculated

averages. The difference between the unfilled and filled datasets is

visualized in Figure 3.

4.1.3 Findings. We evaluate the conditional anonymity sets of U.S.

citizens in three different scenarios. In the first case, we examine

the entire U.S. population without additional information. Then, in

the second case, we narrowed our focus to fertile women, estimated

by restricting the age range from 20 to 60. This particular case

includes individuals directly affected by Roe v.Wade, as described in

Section 1.1. Finally, our third case explores the effects of additional

8
https://flo.health/about-flo
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knowledge, specifically the knowledge that a woman is using the Flo

app. This third scenario simulates the potential risks associated with

a data breach within the Flo app. To upper-bound the probability

that a woman in the US is using the Flo app, we use the factor

of 50/169.03. We establish this factor since there are about 169.03

million women in the US [12], and the Flo app has about 50 million

active users. While this only constitutes an upper bound (since not

every Flo user is a woman in the US), it still provides interesting

implications to the conditional anonymity set, as we show in the

following paragraphs.

(a) Average set sizes, without filling uncovered counties.

(b) Average set sizes, uncovered counties are filled with the average value.

Figure 3: Average conditional anonymity set sizes for the
female population between 20 and 60 years in the USA.

No Auxiliary Information. The maximum anonymity set size

is offered by Los Angeles County with a size of 11,026 for males

between 25 and 30 years of age, between 175cm and 180cm in height

(5.7–5.9ft), and a weight of 80–85kg (176–187.3lbs). The other four

districts that are not in Los Angeles County but provide the biggest

anonymity set size are Cook County, Illinois (5,535); Harris County,

Texas (4,914); Maricopa County, Arizona (4,475); and San Diego

County, California (3,815), all for 25-year-old males, with a height

between 175cm and 180cm (5.7–5.9ft) and a weight between 80kg

and 85kg (176–187.3lbs). The smallest anonymity set size can be

found in Ada County, Idaho, for males of 20 years with a height of

150cm (4.92ft) and a weight of 40kg (88.18lbs). A person with these

attributes has a BMI of 17.8 and hence is covered by our evaluation.

The overall average anonymity set size for the 840 counted counties

(out of 3,221 official counties) is 77, but as we show in Figure 3, the

average anonymity set size in each uncounted county is around 2.

Looking at the CDF for the US data (c.f. Figure 13), we observe that

20% of the US citizens have a CAS size of less than 70, and 80% of

the US citizens have a CAS size of below 900. The biggest difference

between two anonymity sets in a single district can be found in

Dallas County, where the anonymity set for 25–30-year-old males

is 3.3 times larger than the one for 70–75-year-olds. The average

difference between the smallest and largest set per district is 2.34

times.

Another surprising observation is that San Francisco County

offers only relatively low anonymity. The largest anonymity set

in this county is of size 54,292 (30–35-year-old male inhabitants),

which is a mere 35% of the smallest anonymity set in Los Angeles

County. San Francisco County also exhibits surprisingly small ano-

nymity set sizes for 20–25-year-old inhabitants. For young people

above the age of 25, the anonymity set sizes increase significantly

(c.f. Figure 16 in the Appendix).

Auxiliary Information: Females between 20 and 60 years. The
maximum anonymity set size for females between 20 and 60 years

is in Los Angeles County, California, with a size of 9,089 for females

aged between 25 and 30 years, a height of 160–165cm (5.24–5.41ft),

and a weight of 70–75kg (154,32–165,34lbs). The smallest CAS size

contains a single person in Ada County, Idaho, for 20 to 25-year-old

females with a height of 185–190cm (6.06–6.23lbs) and a weight of

100–105kg (220.46–231.48lbs). The average anonymity set size is 70,

and looking at the CDF function (c.f. Figure 13), the CAS sizes of
females between 20 and 60 years are nearly identically distributed

as the CAS sizes of the overall US population without background

assumptions.

Considering the ten most populous counties in the US, young

women (25–30) usually constitute the biggest anonymity sets, which

is positive in light of our case study. In Miami Dade, however, this is

not the case; instead, women between 55 and 60 make up the largest

CAS, exposing young women to a greater risk of deanonymization.

In fact, in Miami Dade and King County, the smallest anonymity

set consists of 20–25-year-old women, and the largest CAS in King

County is 57% larger than the set of this vulnerable subgroup. Con-

sidering a woman in Miami Dade aged 20–25, 180–185cm of height

and 80–85kg of weight, her anonymity set is only of size 96.

Flo app users (upper bound). To find an upper bound for Flo app

users, we assume that at most 29.5% of all American females use the

Flo app. This upper bound is computed by dividing the number of

50 million Flo app users by the number of 169.03 million American

females as already discussed in Section 4.1.3. As we apply this filter

to each female in the US, the minimal and maximal conditional

anonymity sets remain the same but with a size of one-third of

the original CAS size. This shift is also visible in the CDF function

(c.f. Figure 13), which is equally shifted to the left, indicating the

same distribution but for smaller anonymity set sizes.
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4.1.4 Impact. Coming back to the Flo app, our analysis yields that,

even in “anonymous mode”, the average CAS has a mere size of 20

(and this assumes an upper bound on Flo app users). Even in the

scenario where an adversary cannot distinguish between Flo app

users and non-users, 20% of potential users fall into a CAS of size
70 or lower. Moreover, there exist especially vulnerable groups in

97% of all US counties, for which the CAS size is smaller or equal

to 5. We determine sparsely populated counties as the main factor

impacting anonymity set sizes but note that this is not the only

risk factor. Given our surprising results for Miami Dade County,

we caution that anonymity sets can be very location dependent.

We call for better privacy protections for users of such apps. We

list potential mitigation techniques in Section 5.

4.2 Data Donation Apps in Germany
In the midst of the COVID-19 pandemic, several apps emerged to

monitor the prevalence and transmission of the virus. Given the

noble cause these apps championed and the need for collective

efforts to contain the pandemic, individuals were more generous in

donating their personal data than they might have been in other cir-

cumstances. In addition, a significant number of these apps actively

advocated for and implemented strong privacy standards. In our

examination of the privacy threats posed by these tracking apps,

we focus on the example of the data donation app developed by

the Robert Koch Institute (RKI). The RKI, a respected German gov-

ernment agency, and research institute dedicated to disease control

and prevention, serves as a notable case study for understanding

the implications and challenges associated with the use of such

tracking applications in general.

4.2.1 RKI Data Donation App. The RKI Data Donation App has

gained significant traction, with over one million users in Germany

and a colossal collection of over 400 million data records [2, 38].

Positioned as a pseudonymous platform, the app uses generalization

techniques to protect user privacy, assigning users a unique ID for

associating new data.

During registration, the RKI app collects socio-demographic data.

It then uses wearables to collect longitudinal health metrics, includ-

ing activity and pulse, steps, calories burned, distance traveled,

stairs climbed, sleep patterns, and body temperature over time.

To strengthen privacy measures, the RKI is adopting a strategy

of data generalization prior to transmission. Instead of collecting

precise values, the data is stored with a certain level of granular-

ity. Sociodemographic categories include location (district), gender

(male/female), age (in 5-year increments), height (in 5cm incre-

ments), and weight (in 5kg increments). For example, a person who

is 23 years old would be categorized as 20-25 years old. Notably,

all participant information is linked to a pseudonymous user ID,

providing an additional layer of privacy protection.

4.2.2 Dataset. Our data originates from the German Federal Sta-

tistical Office [5], the agency responsible for conducting the official

census and providing comprehensive demographic statistics. The

census dataset, identified as table 12411-0018, consists of tuples de-
noting the attributes of the German population, including district,

gender, age, and number. Similar to the approach taken in the US

case study, our analysis focuses on age groups between 18 and 75,

with population counts from December 2020.

To enhance our insights, we augment this dataset with infor-

mation on the height and weight of the German population from

table 12211-9018. The German dataset provides tuples indicating

mean weight, mean height, age, and sex from a 2017 health survey.

Supplementary statistics on the distribution of body weight and

height from this survey, provided by the German Federal Statistical

Office [5] and detailed in Appendix C, contribute to our analysis.

We assume that height and weight are independent of district of

residence (but not of country), and we note that the differences

between West and East Germany in 1999, as analyzed by Bergmann

and Mensink [15], were generally small.

Like in the case study for the US, we assume both height and

weight are normally distributed around the mean and restrict the

body mass index to a range between 17 to 30 to filter for impossible

combinations of height and weight.

The German Federal Statistical Office’s publication on using

smartwatches by age groups [10] becomes another dimension of

our analysis. We assume independence from district and gender,

although deviations may exist in practice. Nevertheless, this as-

sumption allows us to make approximate estimates and to illustrate

the diminishing anonymity in the presence of additional adversary

background knowledge. In addition, we assume that the demo-

graphic distribution of app participants is consistent with census

data. In the context of the Covid data donation app, the Robert

Koch Institute (RKI) conducted a detailed analysis and concluded

that the age distribution of their data matches the total population,

with minor deviations. They also observe that female donors are

slightly younger than the national average, while male donors are

slightly older, resulting in a slightly higher proportion of women

in their dataset compared to national statistics [6].

The RKI Data Donation App is specifically designed for Germany,

so our analysis focuses solely on this country. We perform a de-

tailed examination of app-specific types of adversarial background

knowledge in three progressive steps. In the first step, we evaluate

the scenario without any additional background information. This

forms the baseline for our analysis. In the second step, we consider

individuals using a smartwatch. Since the RKI app incorporates

longitudinal health data from wearables, assuming smartwatch

users provide a first and approximate estimate of potential RKI app

users. In the final step, we examine the scenario where a user has

not only adopted a smartwatch but has also installed the RKI app.

This represents a more specific and refined level of background

knowledge that accounts for the user’s active engagement with the

RKI app. We give an overview of the average anonymity set sizes

with the respective additional background information in Figure 4

in the Appendix.

No Auxiliary Information. Berlin and Hamburg offer the highest

protection on average, followed by cities such as Hannover, Leipzig,

and Stuttgart (c.f. Figure 4a and Figure 20). Interestingly, some

large cities, such as Munich, only offer lower anonymity set sizes

despite having a higher population density than Berlin. Regarding

the maximum anonymity set sizes, all districts have at least one

combination of attributes possessed by at least 100 individuals.
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(c) RKI participants.

Figure 4: Average anonymity set sizes by district given different auxiliary information in Germany.

The largest anonymity set overall is of size 7,903 and contains

females between 65 and 70 years old and 160—165cm tall, weighing

70—75kg, living in Berlin.

Figure 14 shows the cumulative distribution function (CDF) for

the anonymity set sizes. The blue line shows the CDF, considering

no auxiliary information. We can see that more than 10% of the

population has an anonymity set of size less than 40. About 30% of

the population have an anonymity set greater or equal to 300.

Auxiliary Information: Smartwatch Users. Adding seemingly triv-

ial background knowledge – such as which individuals are users

of a smartwatch – can already result in a detrimental loss of pri-

vacy. We compare the distribution of average anonymity set sizes

without auxiliary knowledge with the one assuming knowledge

of smartwatch users. With the exception of Berlin, none of the

areas can offer an average anonymity set size of more than 500

anymore. In fact, most of the districts now average below 50 (354

of 401 districts).

We observe a similar decay of privacy for the maximum set sizes

(c.f. Figure 21). Only Berlin, Hamburg, Hannover, Frankfurt, and

Cologne still have anonymity sets beyond the size of 400.

Due to the low number of smartwatch users in the age group

65—70, the previously largest anonymity set of female pensioners

has shrunk from 7,903 to a count of 570. The new top spot is now

allocated to the group of female citizens of Berlin aged 30—35 and

being of height 165—170cm and weight 65—70kg. This group has

an anonymity set size of 1,889.

Figure 14 indicates that this auxiliary information corresponds

to a shift of the CDF of about one order of magnitude. More than

30% of smartwatch users have an anonymity set of size less than

20. Only about 15% belong to a set with more than 100 members.

Auxiliary Information: App Participants. The RKI’s blog provides
detailed information on the regional distribution of its donors [7],

providing us with the necessary probability distribution to calculate

the corresponding CAS.

Figure 4c strikingly demonstrates the disastrous consequences

of an adversary having detailed membership information about the

app’s participants. All districts except Berlin, Hamburg, Hannover,

and Cologne offer average anonymity sets of fewer than 5 members.

And even those exceptions do not go beyond a size of 25 on average.

The maximum anonymity set size overall can be found in Berlin

and has the same combination of attributes as in the first scenario.

This time, the set has a size of a mere 57 members. Most other

districts can only provide a maximum anonymity set size of less

than 5 (c.f. Figure 22 in the Appendix).

The CDF (Figure 14) shows that more than 87% of the app’s

participants are uniquely identifiable and can be de-anonymized

by an adversary with success(𝑖) = 1.

4.2.3 Impact. Our findings for the data donation app are even

more concerning than those for the Flo app. An adversary with

knowledge about the app participants can uniquely identify 87%

of the users. Even if we relax the assumptions on the attacker and

only assume knowledge of seemingly harmless information such

as the smartwatch user background information, anonymity set

sizes tend to be small. We can again identify vulnerable subgroups

that are especially prone to de-anonymization. One of these groups,

for example, is the set of female pensioners with smartwatches.

Moreover, location also plays a crucial role. Inhabitants of sparsely

populated districts tend to be more vulnerable than inhabitants of

big cities. Overall, our findings affirm the need for better privacy

protections, and we refer to Section 5 for potential mitigations.

4.3 Visual Anon
The case studies we have provided so far focus primarily on Ger-

many and the United States. However, recognizing the diversity

of conditional anonymity sets across multiple countries, we aim

to broaden awareness and make the impact of these sets tangible

to a wider audience. To achieve this goal, we present VisualAnon
(https://visualanon.org), an online tool designed to assess condi-

tional anonymity sets worldwide. For the reviewing process, we
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made VisualAnon anonymous. The username to access VisualAnon

is “PETS”, and the password is “VisualAnon”. Currently, we have

collected statistical data for 39 countries, encompassing a popu-

lation of over one billion users who can estimate their highest

achievable level of privacy. In this section, we illustrate the pro-

cess of building VisualAnon and demonstrate how this online tool

can effectively estimate conditional anonymity on a global scale.

Through VisualAnon, we aim to provide a comprehensive under-

standing of the nuanced variations in conditional anonymity across

countries, thus contributing to a more comprehensive and globally

relevant perspective on privacy implications.

4.3.1 Goals. The primary goal of VisualAnon is to expand the

awareness of conditional anonymity beyond our initial case studies

in Germany and the US. We aim to provide an experiential un-

derstanding of how the knowledge of only a few attributes can

already lead to the deanonymization of individuals into small and

identifiable groups. Through VisualAnon, users can interactively

explore the dynamic variations in conditional anonymity set sizes

considering attributes such as age, gender, height, andweight across

different districts. These attributes, which are common in health

applications, serve as a basic starting point for our exploration.

As we move forward, we intend to expand the scope by incorpo-

rating additional attributes to enrich the analysis. By continually

improving VisualAnon, we aim to provide a more comprehensive

and nuanced perspective on the challenges and implications of

conditional anonymity and understanding in this critical area.

4.3.2 Dataset. We built the dataset for VisualAnon based on our

existing data from the US and Germany. To expand its scope, we

collected additional data from various sources, including Eurostat

for the European Union and Switzerland, Statistics South Africa via

email, NZ.Stat for New Zealand, the Statistics Bureau of Japan, the

Australian Bureau of Statistics for Australia, Statistics Canada, and

the Census and Statistics Department for Hong Kong.

The collection of height and weight data varies from country

to country, and currently, we have extracted this information only

for the US, Germany, and Japan. In cases where height and weight

data is unavailable for a specific country, VisualAnon defaults to

the German dataset. We are actively seeking and incorporating

height and weight data for additional countries to improve the

tool’s global applicability and accuracy. We plan to make our pre-

processed data publicly available on the VisualAnon website to

facilitate further research on measuring anonymity. At the time of

writing, VisualAnon covers 1,084,230,346 people from 39 countries,

with at least one country per continent, which is roughly 13.98% of

the world population.We defer an example of the use of VisualAnon

to Appendix A.

4.4 Global Measurements
Using our rich dataset, we aim to explore the global variation in

CAS across countries. This investigation focuses exclusively on

CAS determined by the attributes of district, gender, and age, as

these three factors alone significantly narrow the scope of CAS. In
this section, we present noteworthy findings from our extensive

dataset and offer perspectives that we find particularly interesting.

Specifically, we address the following questions:

(1) What are the countries with the smallest CAS size?
(2) Is there an observable difference in CAS size between males

and females?
(3) To what extent is it possible for a citizen to enhance their

conditional anonymity?

We address each question in its own section, followed by a more

detailed examination of countries with notable findings. We expect,

for this section, that the average CAS size for Germany and the US

are higher than in Section 4.1 and Section 4.2, since we now don’t

consider the height and weight attributes anymore.

4.4.1 The Smallest CAS Size. We begin our analysis by asking:

which of our covered countries have the smallest non-zero CAS,
given the attributes of county, age, and gender? This question is an-

swered in Table 1, which shows all countries with a minimum CAS
per gender between 1 and 100. Australia emerges as the country

with the smallest CAS size. In Acton, there is only one male (and

one female) in a given age group. It is also noteworthy that the US

ranks 5th with a CAS size of 82 males in Bastrop County, Texas,

within a specific age group. This observation is particularly remark-

able considering that the American Community Survey provides

data for only 840 of the 3,221 official counties (c.f. Section 4.1).

Table 1: Minimal CAS size (≠ 0) for countries with a minimal
CAS size of at most 100.

Country District Minimal Set

Australia Acton 1 male

Alps - East 1 female

NZ Chatham Islands Territory 3 males

Chatham Islands Territory 3 females

Canada Churchill–Keewatinook Aski, Man 5 males

Northwest Territories, NWT 10 females

Japan Nakagusuku-son 19 males

Nakagusuku-son 34 females

US Bastrop County, Texas 82 males

Riley County, Kansas 165 females

4.4.2 Gender-Specific CAS Differences. In the next question, we

address gender-specific differences in the CAS. Specifically, we
want to explore possible differences between the average CAS size

for males and females per country. To answer this question, we

calculate the average CAS size per country and gender, along with

the quotient between the average male and female CAS sizes. This

quotient allows us to assess gender-specific differences.

The most interesting results of our evaluation are depicted in

Table 2. The top half of the Table 2 shows countries where the

male/female ratio is less than 0.9, indicating that the average CAS
size for males is more than 10% smaller than for females. Conversely,

the bottom half of Table 2 contains countries where the male/female

ratio is above 1, indicating that the average CAS size favors females.

Notably, Hong Kong stands out as the only country where the

average CAS for males exceeds that of females by more than 10%,
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with a remarkable quotient of 3.95. Since Hong Kong is so outstand-

ing, we further explore the anonymity implications of people living

in Hong Kong in Section 4.4.4.

Table 2: Average anonymity set size by district, gender, and
age. We depict countries from our dataset where the quota
of male/female is below 0.9 and above 1.

Country CAS (Male) CAS (Female) Male/Female

Latvia 9,398.46 11,349.89 0.83

Lithuania 8,276.40 9,859.30 0.84

Estonia 7,045.06 8,264.81 0.85

Hungary 14,041.77 15,690.20 0.89

Sweden 13,020.80 12,983.48 1.00

Iceland 4,381.61 4,357.64 1.01

Norway 7,465.53 7,350.08 1.02

Hong Kong 10,551.02 2,672.81 3.95

4.4.3 CAS Variance. To this point, we have estimated the minimal

and average CAS sizes of each country in our dataset. However,

our analysis of the US in Section 4.1 has already shown that there

are countries where the actual CAS size deviates heavily from the

average CAS size for a country (e.g., Figure 3, where we have iso-

lated bright zones with a high average CAS, and most red zones

with a low average CAS). Therefore, we ask how starkly the CAS
sizes deviate from the average CAS size in our collected countries.

To answer this question, we computed for each country and

gender how many conditional anonymity sets deviate more than

30% from the average CAS size. We then calculated the percentage

of these deviating sets over all possibleCAS. If the percentage is low,
then most of the attribute combinations lead to a similar CAS size,

and switching the attribute set by, e.g., moving from one district

to another has no big effects on the own CAS. If the percentage is
high, then with a high probability, changing the own attribute set

can influence the CAS size. In Table 3, we show the countries with

a deviation of less than 50% from their average CAS size (top half)

and countries with a deviation of more than 80% (bottom half).

Using this first result, we now want to focus further on the six

countries with more than 80% deviating attribute combinations. In

particular, we want to examine how the average CAS size changes

when we remove the outmost quartiles of the CAS sizes. For these

countries, we presume that the majority of people live in isolated

districts, and hence, the average CAS size of all other districts

should be much lower. We examine this question by considering the

average CAS size, the average CAS size without the upper quartile

of all CAS sizes, and the average CAS size without the upper and
lower quartile (of all CAS sizes). Table 4 shows the results of this
examination, and we can see that all six countries have much lower

CAS sizes when we remove the quartile of the upper CAS sizes. In

addition, Table 4 also shows the percental decrease of the average

CAS size for each country and gender. The lower this percentage is,

the smaller the remaining averageCAS after removing the quartiles,

meaning that there are many small and less big CAS sizes. We

observe a notable case of the percental decrease in Japan, where the

remaining average CAS size for males is only 27% of the original

Table 3: Countries, and the percentage of CAS that deviate
more than 30% from the mean CAS size. We show countries
with less than 50% (the CAS is similar in the whole country)
and more than 80% (the CAS tends to be different).

Country Male Dev. Female Dev.

Cyprus 0.357143 0.428571

Slovakia 0.446429 0.348214

Canada 0.509026 0.499704

Latvia 0.476190 0.523810

Poland 0.544372 0.465368

New Zealand 0.797575 0.804104

Greece 0.798319 0.824930

Estonia 0.842857 0.742857

United States of America 0.858333 0.854836

Japan 0.873281 0.871206

Sweden 0.863946 0.880952

average CAS size. In contrast, all other countries show a value of

at least 39%. Because of this outlier, we take a closer look at Japan

in Section 4.4.4 and Section 4.4.5.

Table 4: Changes of the average CAS under different con-
ditions for countries with a high deviation from the mean
CAS (c.f. Table 3). The first column describes the mean CAS
without conditions, the second column the mean CAS if the
highest quartile is removed from the dataset, and the third
column the mean CAS if both the lower and the upper quar-
tile are removed. The upper half depicts the data for males
and the lower half for females.

Country Average M Lower M Mid M

New Zealand 1,867 728 (39%) 839 (44%)

Greece 6,183 2,895 (46%) 3,320 (53%)

Estonia 7,045 4,891 (69%) 5,705 (80%)

US 8,981 3,950 (43%) 4,546 (50%)

Japan 5,440 1,505 (27%) 1,781 (32%)

Sweden 13,020 6,726 (51%) 8,076 (62%)

Country Average F Lower F Mid F

New Zealand 1,939 781 (40%) 886 (45%)

Greece 6,444 2,921 (45%) 3,429 (53%)

Estonia 8,264 6,440 (77%) 6,796 (82%)

US 9,416 4,340 (46%) 4,808 (51%)

Japan 5,770 1,640 (28%) 1,960 (33%)

Sweden 12,983 6,734 (51%) 7,906 (60%)

4.4.4 Comparing Outliers. Our previous examinations yielded the

following outliers: Australia, since it has the smallest minimal CAS
size (c.f. Table 1). Hong Kong since it has an outstanding ratio

between female and male CAS sizes (c.f. Table 2). Japan since it has

the biggest drop of an average CAS when removing the highest

quartile (c.f. Table 4). The US, since it has the fifth smallest minimal
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CAS size (c.f. Table 1), although only 840 of the 3,221 official counties

are counted.

In this section, we inspect the cumulative distribution functions

for each of these countries to elaborate on the differences in the

CAS distribution of each country. In contrast to the evaluations in

Section 4.1, and Section 4.2, we consider the CDF of the CAS sizes

only for the attributes district, gender, and age, yielding bigger CAS
sizes. We compute the graph of the CDF based on three assumptions

and depict the graph of the CDF in Figure 28:

• The first CDF assumes no background knowledge (Figure 28a).

• The second CDF depicts only females in an age range be-

tween 20 and 60 (Figure 28b).

• The third CDF depicts males in an age range between 20 and

60 (Figure 28c).

The CDF, without further assumptions, provides a baseline. We

can observe that a factor of at least 100 shifts the CDF of Australia

compared to the other countries. This matches our observation that

Australia has the smallest minimum CAS size and indicates that

most CAS sizes in Australia are smaller than in the other coun-

tries. Furthermore, the CDF curve of Australia is much smoother

than the other lines. This indicates that we have more data points

for Australia compared to the other countries (most likely due to

smaller district sizes).

A second observation is that Japan has the flattest CDF curve.

This indicates that the distribution of the CAS sizes has a higher

variance compared to the other countries, which is in accordance

with our observations in Table 4. At the same time, the CDF curve

of Hong Kong is the steepest one, indicating that the distribution

of the CAS sizes has low variance.

Our third observation arises from the difference between the

male CDFs (Figure 28c) and the female CDFs (Figure 28b). These

CDFs look similar for each country except for Hong Kong. For Hong

Kong, the female CDF is shifted by a factor of 10 to the origin. This

complies with our computed male/female quotient (c.f. Table 2),

which is 3.95 in Hong Kong and is the only quotient differing

significantly from the value 1 which is roughly the quotient for all

other countries we investigated.

Figure 5: Average conditional anonymity set sizes for Japan
for the attributes district, gender, age, height, weight.

4.4.5 Case Study: Japan. We also examine the case of Japan and

show that even in a densely populated country, the conditional

(a) Population Distribution for Tokyo-to.

(b) Population Distribution for Nakaguskuku-son.

Figure 6: Comparing the population distribution in Japan of
the districts Tokyo-to and Nakaguskuku-son.

anonymity set (CAS) decreases to single digits for many attribute

combinations. In contrast to Germany and the US, Japan has a

higher average CAS size, as shown in Figure 5. To facilitate the

comparison, we also incorporated the attribute’s height and weight

to compute the average CAS size for this figure. In Figure 5, we

find that there are only a few districts with a high CAS size and

multiple districts with a low CAS size. This aligns with our findings

in Table 4. Furthermore, these differences become apparent if we

compare one of the most populated districts (namely Tokyo-to)

with a less populated district (namely Nakaguskuku-son). We do so

in Figure 6 and see that the population of Tokyo-to is by a factor of

1000 higher than in Nakaguskuku-son. This confirms our previous

findings that the density of the population within a district is a

major influence on conditional anonymity.

To illustrate an example where the conditional anonymity set

(CAS) is a single-digit number, we examine the ward Akaiwa-shi.

This ward has a total population of 13,676, of which 5,225 are males.

Notably, there are only 239 individuals in the specific demographic

category of males aged 20, as shown in Figure 7.

When we narrow down our assumptions by assigning a height

of 172kg, we have 57 people in the CAS, and when we set a weight

of 62kg, we are left with only 6 people in this CAS.

5 CONCLUSION
In this work, we analyzed the degree of anonymity of several sub-

groups in 39 countries based on attributes that are frequently col-

lected by health apps. We derived how anonymity set sizes can be
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Figure 7: Male population in Akaiwa-shi, Japan.

used to measure the adversary’s success in our model and proposed

calculating those set sizes based on population statistics only. This

way, we can quantify the privacy of individuals without having

access to concrete instantiations of the datasets.

We evaluate our approach through two case studies on popular

health apps in the US and Germany. We investigated the anonymity

sets under different adversarial background knowledge. In the USA,

97% of the counties have average anonymity set sizes of less than

5 for women between ages 18 and 60, and the average anonymity

set size for the whole US population is even smaller. For the RKI

application, assuming knowledge of participation, the sets can be

reduced to a single member for over 87% of the participants. We also

demonstrated that a simple attribute such as “owning a smartwatch”

reduces the anonymity set sizes to less than 20 for more than a

third of the population. These small anonymity sets allow unique

identification and de-anonymization of the individuals in case of

data breaches.

We then present overarching findings from 39 different countries.

These corroborate our previous results: being an inhabitant of a less

densely populated district significantly impacts one’s anonymity set.

Thus, sharing one’s district with a health app can often deteriorate

the expected anonymity. We also evaluate gender imbalances and

find that Eastern European countries provide larger anonymity sets

to female than male inhabitants. In Nordic countries, we observe a

reversal of this trend. We also investigate findings in places such

as Hong Kong and Japan and identify vulnerable subgroups. We

validate the accuracy of our approach using a fictional dataset of

102.5 million users.

We also developed an online tool called VisualAnon (https://

visualanon.org), which allows exploring these sets. We aim to in-

crease awareness of conditional anonymity and provide an easy-to-

use tool for users to determine their vulnerability to deanonymiza-

tion attacks.

5.1 Possible Mitigations
While evaluating mitigation techniques goes beyond the scope of

this work, we want to highlight possible directions for future work.

As outlined in Section 2, our community has already created a large

body of literature on protecting health data. This includes early

approaches such as 𝑘-anonymity [34] and 𝑙-diversity [24] as well

as many variations of Differential Privacy [17], which provides

provable privacy against strong adversaries. Unfortunately, the

adoption of such techniques is scarce. A notable exception is the

use of Differential Privacy by tech giants such as Google and Apple.

While employing privacy-enhancing methods would be the pre-

ferred solution, other simple steps could be taken to increase ano-

nymity sets for existing applications. Such measures include in-

creasing the bucket size of crucial attributes or simply collecting

less data. Since sparsely populated districts are a primary factor in

anonymity set sizes, this attribute could be a good target. Moreover,

our analysis and tool VisualAnon enable app developers to tailor

bucket sizes depending on vulnerable groups. If necessary, data

could be collected in variable bucket sizes to guarantee minimum

anonymity set sizes, an approach that resembles the guarantees of

𝑘-anonymity.
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A VISUALANON EXAMPLE: BRISTOL
In this section, we demonstrate how VisualAnon estimates the

conditional anonymity set using an example from Bristol. Yet,

we encourage readers to explore VisualAnon directly at https:

//visualanon.org to estimate their own conditional anonymity sets.

In this sample case, we evaluate the CAS of a 25–29-year-old male

from Bristol, UK, with a height between 180–184cm and a weight

between 90–94kg. VisualAnon categorizes this request in the fol-

lowing result:

• 63,182,180 People live in the United Kingdom

• 428,235 of them in Bristol, City Of

• 172,750 are male

• 20,605 are in the [’25’] years bucket

• 5,248 of them are [’180’] cm high

• 573 of them weight [’90’] kg

With our example request, the candidate has a conditional ano-

nymity set of 573 people. Besides showing the CAS, VisualAnon
also allows a user to comprehend how the CAS can be influenced

by changing each attribute or by expanding the buckets of the at-

tributes. We visualize the evaluation of VisualAnon for our given

attributes in Figure 8. The selected attributes are highlighted in

green color.

B ACCURACY OF THE CAS
In this section, we provide additional measurements on the accuracy

of the CAS.

C ADDITIONAL STATISTICS
The Statistisches Bundesamt has provided us with additional statis-

tics on the body height and body weight for table 12211-9018 in the

Genesis database. The relevant statistics can be found in Table 5.

D ADDITIONAL FIGURES
In this section, we provide additional figures from our evaluations.
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Gender Age group Height (cm) Weight (kg)

Interval Mean Standard Deviation Interval Mean Standard Deviation

female

[18, 20) [100, 199] 167.6 6.8 [33, 199] 61.4 10.9

[20, 25) [100, 197] 167.6 6.8 [34, 175] 63.0 11.5

[25, 30) [100, 205] 167.3 6.6 [30, 170] 65.4 12.9

[30, 35) [117, 195] 167.2 6.6 [34, 180] 67.0 13.9

[35, 40) [120, 201] 167.4 6.6 [36, 200] 67.9 14.0

[40, 45) [100, 200] 167.2 6.7 [35, 180] 68.8 13.9

[45, 50) [100, 201] 167.2 6.6 [34, 180] 69.4 13.7

[50, 55) [120, 197] 166.7 6.4 [30, 200] 70.1 14.1

[55, 60) [122, 200] 165.8 6.4 [30, 182] 70.4 13.9

[60, 65) [120, 225] 164.8 6.3 [33, 200] 70.9 14.0

[65, 70) [100, 225] 163.9 6.2 [30, 160] 71.3 13.7

[70, 75) [120, 192] 163.8 6.1 [32, 186] 70.5 13.3

male

[18, 20) [150, 206] 181.2 7.8 [33, 178] 75.9 13.1

[20, 25) [117, 225] 181.2 7.6 [32, 200] 79.4 14.0

[25, 30) [140, 213] 180.8 7.5 [40, 200] 82.8 14.6

[30, 35) [128, 210] 180.5 7.3 [39, 200] 84.6 14.9

[35, 40) [120, 212] 180.4 7.2 [45, 200] 86.0 15.1

[40, 45) [120, 217] 180.2 7.3 [38, 200] 87.4 15.1

[45, 50) [100, 210] 179.9 7.3 [40, 200] 87.7 15.0

[50, 55) [100, 210] 179.5 7.2 [30, 200] 87.9 15.0

[55, 60) [120, 219] 178.7 7.0 [32, 197] 87.8 15.0

[60, 65) [105, 208] 177.7 6.8 [34, 200] 87.4 14.6

[65, 70) [120, 225] 176.5 6.7 [35, 200] 86.6 14.4

[70, 75) [105, 200] 175.8 6.7 [33, 200] 84.9 13.8

Table 5: Minimum, maximum, mean and standard deviation for table 12211-9018 provided by the German Federal Statistical
Office [5].
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(a) Population in the district of Bristol, UK.

(b) Height distribution.

(c) Weight distribution.

Figure 8: Example evaluation of VisualAnon for a 25–29-year-
old male from Bristol, UK, with a height between 180–184cm
and a weight between 90–94kg.
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Figure 10: CAS and RAS for each user, showing the relation-
ship and distribution across the full range of values.
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Figure 11: CAS-RAS divergence for RAS ≤ 50, highlighting the
differences in smaller RAS values.

962



Measuring Conditional Anonymity—A Global Study Proceedings on Privacy Enhancing Technologies 2024(4)

0 2000 4000 6000 8000
RAS size

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Va
lu

e

Total CAS-RAS Divergence
CAS-RAS Divergence

Figure 12: Total CAS-RAS divergence, illustrating how the
absolute divergence decreases as RAS increases.

Figure 13: CDF of anonymity set sizes for different auxiliary
information for the US data.
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Figure 14: CDF of anonymity set sizes for different auxiliary
information for the German data.

Figure 15: Population in the district of Bristol, UK.

Figure 16: Male population distribution in San Francisco.
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Figure 17: Height distribution for a 25–29-year-oldmale from
Bristol, UK, with a height between 180–184cm.

Figure 18:Weight distribution for a 25–29-year-oldmale from
Bristol, UK, with a weight between 90–94kg.

Figure 19: Selecting Multiple ages in VisualAnon, at the ex-
ample of Bristol, UK.
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Figure 20: Maximum set sizes of districts in Germany, no
background knowledge.
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Figure 21: Maximum set sizes of districts in Germany, smart-
watch users.
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Figure 22: Maximum set sizes of districts in Germany, RKI
participants.
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Figure 23: Cumulative distribution function comparison
across Australia, Hong Kong, Japan, US, and Germany with-
out any background knowledge.

Figure 24: Cumulative distribution function for females aged
20–60 years in Australia, Hong Kong, Japan, US, and Ger-
many.

Figure 25: Height distribution of Japanese males aged 20-30
years from Akaiwa-shi, Japan, with a height between 170-
175cm.

Figure 26: Comparison of the cumulative distribution func-
tions of Australia, Hong Kong, Japan, and the US based on
the attributes district, gender, and age for males, 20–60 years
old.

Figure 27: Weight distribution of Japanese males aged 20-30
years from Akaiwa-shi, Japan, with a weight between 60-
65kg.
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(a) No background knowledge.

(b) Females, 20–60 years old.

(c) Males, 20–60 years old.

Figure 28: Comparison of the cumulative distribution func-
tions of Australia, Hong Kong, Japan, and the US based on the
attributes district, gender, and age with different background
assumptions.
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